

Maintaining CO₂ Quality in Bulk CO₂ Storage Vessels

Nicole James & Franz Dey

Airborne Labs International The Linde Group

May 4th 2016, Fort Myers, Florida

Maintaining CO₂ Quality in Bulk CO₂ Storage Vessels

NVOR in Mini Bulk Tanks (MBT)

- Properties of NVOR
- Causes for NVOR Build-Up in MBT
- Evaluation of NVOR Contaminant

Transfer of this Knowledge to Larger Scale Vessels

What is the same, what is different?

How to Maintain the CO₂ Quality

- Influencing Factors
- Best Practices Summary

Background & Definitions

Non-Volatile Residue (NVR):

•Grand total of suspended and dissolved particulate matter, including NVOR. Examples of NVR include, but are not limited to: rust, dirt, adsorbent bed fines (ex. charcoal, silica gel), filter fibers, transfer material / process wear particles.

Non-Volatile Organic Residue (NVOR):

•All forms of organic semi-volatiles and non-volatiles compounds (e.g. oils, greases, plastic and elastomeric leachates).

General Properties of NVOR:

- Low Vapor Pressure
- •Soluble or Suspended Organic Impurities in Liquid Phase CO_{2.} Myth: NVOR is insoluble and floats to bottom.
- •Solubility in extracting solvents (ex. hexane, MeCl₂)

Potential Sources of NVOR

Overview

Compressor Oils

O-Rings and Elastomeric Parts

Piping & Hardware Assembly Aids

Elastomeric Hoses and Tubing

Feed Gas Bio-Oil Residues

Basic Analytical Methods

Simple Snow Cone Screening - Qualitative Test

Pass
No Visible NVR / NVOR

Fail 60 ppm w/w NVOR

Snow Screening

- A solid CO₂ (snow) sample is collected and allowed to sublime.
- The interior of the sample container is examined.
- Results are reported as Pass / Fail. If no NVR/NVOR is observed the result is reported as "Pass".

Basic Analytical Methods

Simple Snow Cone Screening - Qualitative Test

Specification Limit 5 ppm

Pass 2 ppm

At low levels (2 ppm w/w) NVOR can be visually detected.

Basic Analytical Methods

ISBT Method 8.0 Procedure A – Quantitative Test

Difference weight after sublimation of snow

Field Study

ALI Lab Data - MBT Samples to Date

To date 31 MBT samples tested. % ISBT NVOR failures = 29%

NVR		NVOR		
Concentration		Concentration		THC
(ppm)	NVR Description	(ppm)	NV0R Description	(ppm)
860	Pale, yellow oil and fine, dark paricles.	810	Pale, yellow oil.	7.3
8.3	Yellow oil and various, dark particles.	7.1	Yellow oil.	1.0
11	Various, black particles and clear, yellow oil.	10	Clear, yellow oil.	1.3
230	Dark, yellow oil and black particles.	210	Dark, yellow oil.	0.6
44	Fibers, yellow oil and black particles.	35	Clear oil and light, yellow oil.	
92	Dark, yellow oil and black particles.	84	Yellow oil.	4
14	Dark, yellow oil residue and black particles.	10	Dark, yellow oil.	
45	Fine, black particles and clear oil.	31	Clear oil.	6.5
32	Various, black particles, yellow oil and fibers.	29	Some yellow oil and clear colorless oil.	0.2

ISBT NVOR Limit for Bev-Grade $CO_2 = 5$ ppm w/w ISBT NVR Limit for Bev-Grade $CO_2 = 10$ ppm w/w

Field Study

 An NVOR content of 800+ ppm w/w is equivalent to 291 g = 363 mL NVOR in an 800 lb MBT

800+ ppm w/w NVOR

Field Study

Calculations - MBT NVOR Build-up

- 1 year, NVOR = 7 ppm w/w
- 4 yrs, NVOR = 28 ppm w/w
- 8 yrs, NVOR = 56 ppm w/w
 with a NVOR load of 26 ml in the 800 lb MBT

Assumptions:

- All MBT loads @ calculated 1 ppm NVOR
- 150 800 lb LCO₂ typical MBT capacity
- MBT Top-off 1X / month @ ≈ 40% remaining fill (0.6 tank capacity)
- Most of oil retained in LCO₂ phase of MBT
- No MBT Drainage for: 1, 2, 4, 8 yrs
- Typical oil density = 0.8 g/ml
- Conversions: 1 US Ton = 2,000 lb = 90,800,000 g = 90,800 kg. 1 lb = 454 g, 1 μ g = 1 x 10 $^{-6}$ g

Known Causes of High NVOR

Fountain Mini Bulk Tank Current Practices

- Some MBT manufacturers have no recommended tank drain / tank cleaning schedules – or customers ignore their recommendations
- Some MBT manufacturers have no recommended practices concerning periodic LCO₂ quality screening
- Many current MBT models have no drain port
- It is common to use the vapor phase from MBT

Knowledge Transfer

From MBT to large scale storage vessels

Contamination in Bulk Tanks is rare, but it happens.

Large particles

Small particles, oil, grease, dust

What is it in detail?

Classes of material detected, additional to "O"

➤ Cr Ni Fe — Iron alloy like carbon steel / chrome nickel steel

➤ Cu Sn Zn — Copper alloy like copper / brass

➤ AL Si O — Mol sieve adsorbent

➤ C — Activated carbon

Method used: SEM/EDX analysis SEM: Scanning electron microscope

EDX: Energy-dispersive X-ray spectroscopy

Origin of these particles

CO₂ production plants

- Activated carbon filters particles, carbon
- ➤ Mol sieve particles, aluminosilicate
- > Carbon steel rust
- > Compressor oil
- Installation, maintenance, repair gaskets, polytetrafluoroethylene (PTFE), cuttings, dirt

Rail tank cars and road tanker

- > Filling dirt, particles in hoses
- Material deterioration paint
- > Carbon steel rust
- Installation, maintenance, repair gaskets, polytetrafluoroethylene (PTFE), cuttings, dirt

CO₂ storage vessels

- **≻Tank inlet** dirt, particles
- ➤ Build in vaporizers accumulation of contaminants
- ➤ Process cross contamination e.g. in breweries
- >Carbon steel rust
- ➤Installation, maintenance, repair – gaskets, polytetrafluoroethylene (PTFE), cuttings, dirt

What is the load we have to handle?

Calculations – Storage Vessel NVOR Build-up

Beverage plant:

2000 t of CO2 @ 1 ppm NVOR per year 2 kg NVOR per year 28 ppm w/w NVOR in a 70 t storage vessel

CO2 manufacturing plant:

100.000 t of CO2 @ 1 ppm NVOR per year 100 kg NVOR per year 50 ppm w/w NVOR in a 2000 t storage capacity

Remember the Mini Bulk Tank calculation:

7 ppm w/w NVOR increase per year

The load in conventional storage vessels is even higher than in MBT! What makes the bulk process more safe?

Storage Tank as a Purification Step

What happens during normal operation, it is not only about NVOR?

- **Continuous distillation**
- **Sedimentation of particles**
- **Coagulation of particles**

Storage Tank as a Purification Step

Influencing factors

1. Vertical versus horizontal tank

chance to get lowest point purged

2. Foam insulated versus vacuum jacketed

Distillation increases with heat gain

3. Withdrawal

> liquid, vapor or a mixture

4. Outlet at which height of the tank

low point versus stand pipe

international society of beverage technologists

5. Definition lowest tank level in operation

entrain of sediment

6. Pressure management during loading

vent versus top loading

7. Purging possibilities

tank, pressure building vaporizer, product vaporizer

8. Final filtration

Storage Tank as a Purification Step

Maintain Quality in the Storage Vessels by:

- 1. Avoid accumulation of impurities
- 2. Get them out of the system

Possible reasons for high failure rate in MBT: Vapor phase withdrawal and no purge!

CO₂ Storage Tank Best Practices

Checklist

1. What is reality in your plant?

- How is your tank designed started up operated maintained
- product turnover purging options and routines

2. Have you faced any issues with CO₂ quality?

Would you know if you had issues?

3. Process understanding is key

CO₂ tank as a "purification step", where do the impurities go?

4. Set up your specific program

- ➢ Is there a risk for CO₂ Quality in your system?
- If yes, how to mitigate these risks?

Questions?

Thank you!

