



# On-Line Analysis Strategy for SAE-J2719 / ISO 14687-2020 H<sub>2</sub> Fuel Quality Control

By: Mark Taylor, Dr. Don Pachuta, ALI, Dr. Marc-Antoine Langevin and André Lamontagne, ASD

Airborne Labs International22C World's Fair DriveSomerset, Newwww.AirborneLabs.comP: +1.732.302.1950E: sales@airbo

Somerset, New Jersey 08873 USA E: sales@airbornelabs.com

### SAE-J2719 / ISO 14687-2020 H<sub>2</sub> Fuel Specs

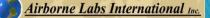
#### (The Analytical Challenge)





| Constituent                                                    | Chemical<br>Formula | Limits     |
|----------------------------------------------------------------|---------------------|------------|
| Hydrogen fuel index<br>(minimum mole fraction)                 | H <sub>2</sub>      | ≥99.97%    |
| Total non-hydrogen gases                                       | TNHG                | 300        |
| Maximum concentration of i                                     | individual co       | ntaninants |
| Water                                                          | H <sub>2</sub> 0    | 5          |
| Total hydrocarbons except<br>methanea (C₁ equivalent)          | тимнс               | 2          |
| Oxygen                                                         | O2                  | 5          |
| Methana                                                        | CH4                 | 100        |
| Helium                                                         | He                  | 300        |
| Nitrogen                                                       | N <sub>2</sub>      | 300        |
| Argon                                                          | Ar                  | 300        |
| Carbondioxide                                                  | CO <sub>2</sub>     | 2          |
| Carbonmonoxideb                                                | co                  | 0.2        |
| Total sulfur compounds <sup>c</sup>                            | TSC                 | 0.004      |
| Formaldehyde                                                   | нсно                | 0.2        |
| Formic acid                                                    | нсоон               | 0.2        |
| Ammoria                                                        | NH <sub>3</sub>     | 0.1        |
| Halogetated compounds<br>(haloget ion equivalent) <sup>d</sup> | TXC                 | 0.05       |
| Particulate Concentration                                      | NVR                 | 1mg/kg     |




## Commercial H<sub>2</sub> Fuel Gas Feed Gas Sources (Grey – Blue – Green Categories)

(Feed Source-Based Impurity Profile – Risk Variables)

- <u>Steam Methane Reformation of Natural Gas</u> (  $\approx$  95%)
- Electrolysis (various electrical power sources)
- Renewable Liquids (ex. Ferm-alcohols, plant based oils)
- Commercial Chemical Processes
- Biogenic Processes (biomass related)

Feed Gas Sources for H<sub>2</sub> Fuel constantly growing! (Analytical Versatility needed)





# Potential Negative Effects of Key Fuel Impurities on PEM-Based Electric Vehicles

- Many key fuel contaminants can <u>reduce fuel cell efficiency</u>
- Some impurities cause <u>reversible</u> fuel cell damage
- CO + Sulfur-based compounds can cause <u>irreversible damage</u> to fuel cell components
- **Total Sulfur Content** (TSC) current limit = **4 ppb (as S)**.
- Note: Due to its effect on fuel cells, future standards may require *lower* **TSC** concentrations.
- Several types of <u>v</u>olatile <u>s</u>ulfur <u>c</u>ompounds (VSCs) can be found in typical  $H_2$  fuel sources (ex. Natural Gas Steam Reformation)



# Analytical Strategy for H<sub>2</sub> Fuel Producers

- H<sub>2</sub> Feed gas source & Impurity Profile = basic risk factors should be 1<sup>st</sup> consideration in selecting an H<sub>2</sub> Analyzer System
- **Critical Impurities** (ex. that cause most serious fuel cell damage) should be monitored in **all** cases (ex. Std CoC Reports for customers)
- Risk / Benefit analysis must also include Costs Complexities Robustness of the analytical system
- **Passivated hardware + Rapid Analysis required** after sampling due to highly adsorptive & reactive impurities (ex. VSCs, VOXs, Halogens, NH<sub>3</sub>)
- Freedom from trace hardware leaks is essential for safety and reliable impurity data
- Detector(s) need to be Ultra-Sensitive, Universal in Response and ALSO have some Selectivity & Specificity (to be explained)
- Ability to do **Continuous On-Line** + Periodic "**Batch**" Testing is Ideal



# **Desired Analytical Measurement Specs**

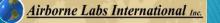
(Range - MDL - Linearity - Specificity - Ruggedness - Speed - Cost)

-H<sub>2</sub> Gas Mfgs will need to **continuously monitor** their process to ensure constant fuel grade quality + *quickly detect* impurity trends / upsets. The ability for use 1L Sample Cylinders for **batch testing** applications is a desired bonus

Range: At least 2X the Impurity Spec. Max (Ideally > 10-100+X above Spec Max)

**Minimum Detection Limit**: Minimum < 50% spec limit – Ideally <10% spec limit

Linearity: Linear or Software-corrected from MDL to > X10 - 100+ spec limit


**Detector Specificity**: Varies from **Universal** (ex.  $N_2$ +Ar) – to Impurity "**Family**" Selective (VSCs, VHCs, VOX, VXC's) to **Highly Specific** (ex. CO, CO<sub>2</sub>, H<sub>2</sub>O, O<sub>2</sub>, NH<sub>3</sub>, He, CH<sub>4</sub>)

Ruggedness: OK in Production Apps – Easy to Operate – Low Maintenance

**Speed:** Reasonable (ex. <10 min for results = ideal)

**Cost:** Affordable for the intended application



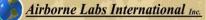


# Basic On-Line H<sub>2</sub> Purity Analyzer Configuration Strategy

#### (Addressing the Most Critical & Common SMR Source Impurities)

#### Standard – Most SMR source Critical




Explosion-Proof Chassis

- Total Sulfur Content including: H<sub>2</sub>S, COS, SO<sub>2</sub>, CS<sub>2</sub>, Mercaptans, Sulfides, Disulfides as ppm (S)
  - Carbon Monoxide (CO)
- Carbon Dioxide (CO<sub>2</sub>)
- TNMHC
- N<sub>2</sub> (In SMR + *blanketing gas* in new storage tanks)

• **CH**<sub>4</sub>

#### **Common Options – Add-ons**

- Helium (He)
- H<sub>2</sub>O Vapor (mostly contaminant related)
- Trace O<sub>2</sub> (mostly contaminant related)



ASDevices

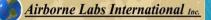
# Basic On-Line H<sub>2</sub> Purity Analyzer Configuration

(Basic H<sub>2</sub> Analyzer Operations Overview – how does it work?)

#### Standard Fuel Grade Hydrogen Analyzer System

- Gas Chromatography (GC) with all passivated hardware leak-fee PLSV Valves + Enhanced Plasma Discharge Detector (Epd)\*
- for TSC-CO-CO<sub>2</sub>-N<sub>2</sub>-CH<sub>4</sub> (GC/Epd)
- \* Epd Basic operation to be explained later

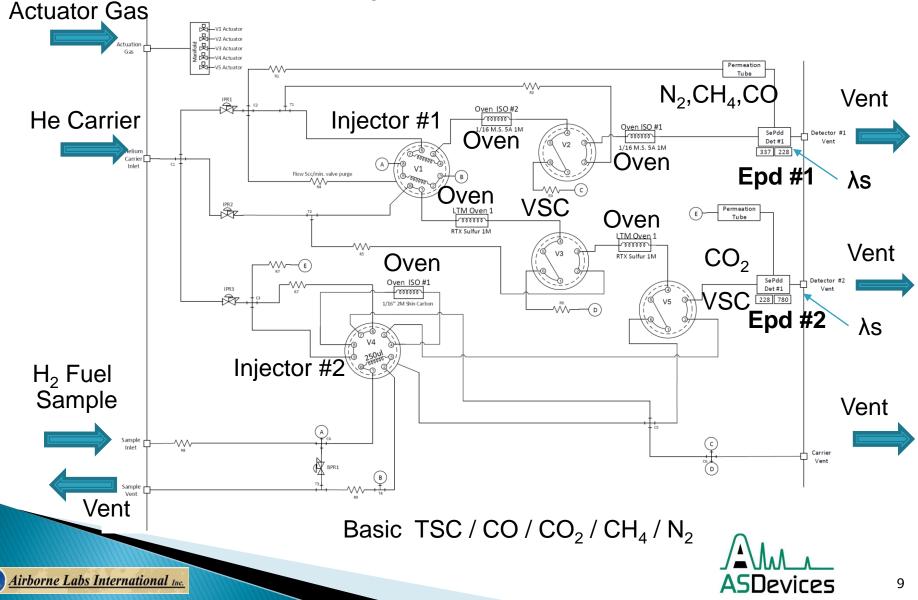
#### Add-on Analyzers & Custom Solutions


- Gas Chromatography with a Thermal Conductivity
- Detector (TCD) for He (GC/TCD)
- Conductimetric H<sub>2</sub>O Analyzer
- Fuel-Cell Based Trace **O**<sub>2</sub> Analyzer

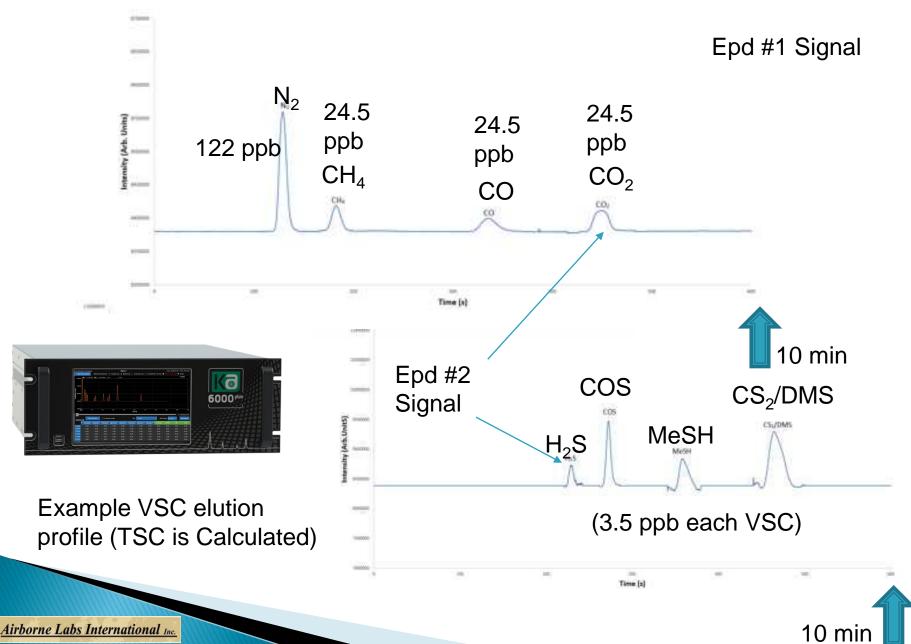






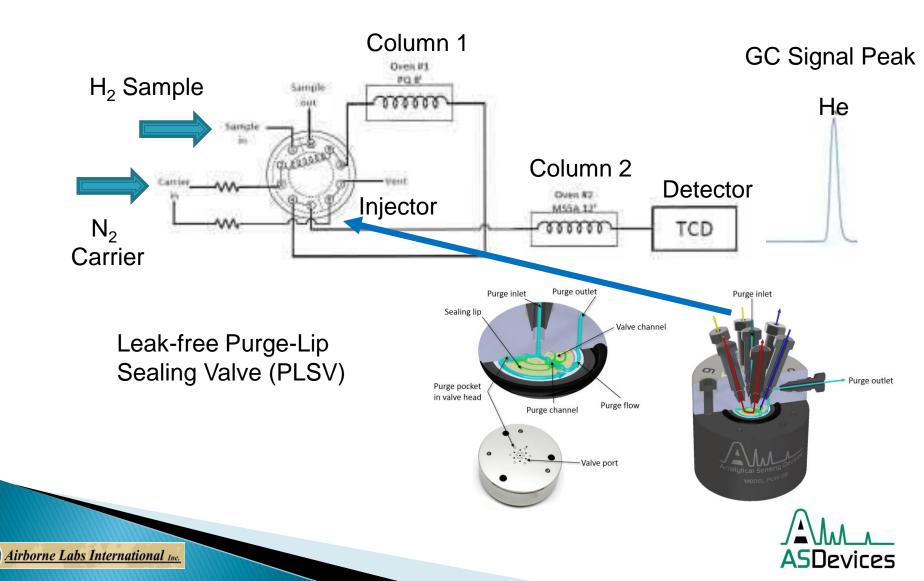






### Standard On-Line H<sub>2</sub> Purity Analyzer Configuration



Electric or




### **GC/Epd H<sub>2</sub> Purity Analyzer Peak Display**



### Optional GC/TCD Unit for He in SMR-sourced H<sub>2</sub> Fuel GC/TCD

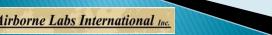
#### (For He Analysis only)



## H<sub>2</sub> Feed-Gas Source + Transport Contaminant Options (Std H<sub>2</sub> Analyzer Add-on Options)

Trace O<sub>2</sub> Analyzer (ex. Fuel Cell sensor) = Transport Contaminant Source (Note: Zr Cell based units <u>cannot</u> be used in a H<sub>2</sub> matrix) GC/DID or GC/ePD's not cost effective.

- Trace H<sub>2</sub>O Analyzer (ex. Conductimetric Sensor)
- = Source or Transport Contaminant.
- Halogenated Impurities (VXC) = <u>Highly</u> Source dependent Primarily a Transport Contaminant Source for SRM & other Feed gas based fuel.
- Rare H<sub>2</sub> Fuel Source Specific (ex. NH<sub>3</sub>, Trace Metals = <u>Highly</u> Source Dependent)




6000 Pla







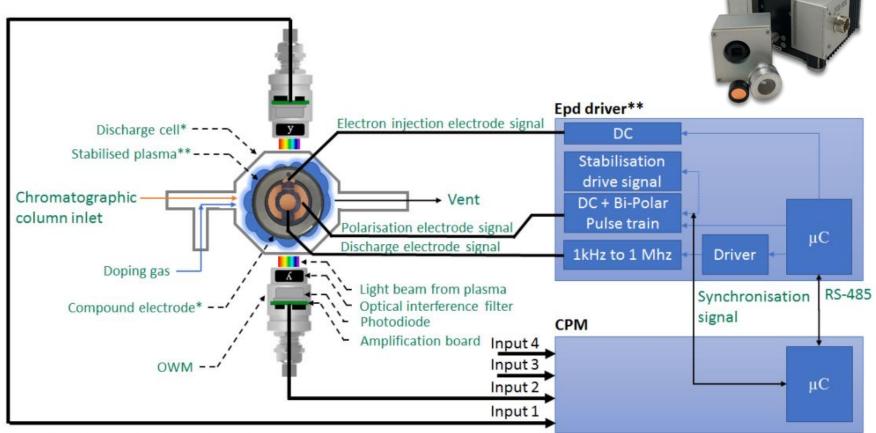


### Basic System Epd - How's Does it Work?

#### **Overview / Background**

Epd = Kind of a hybrid cross between a classic "Discharge Ionization Detector = **DID**" and a "Flame Photometric Detector = **FPD**"

A "plasma" gas discharge created within the Epd causes "**universal**" ionization & **excitation** of the carrier gas PLUS **all eluting** impurities (like a DID).


**Unlike** a DID where an impurity-concentration related "**electrical ion current**" is used for impurity detection (**universal** = no selectivity)– An Epd looks at the **Plasma Emitted Light Photons** generated by the excited impurities for signal generation (like an FPD).

For "**Impurity Selectivity**" an optical **light filter** is located between the Plasma & a photo-diode detector which **only allows** those desired **emission** wavelengths generated by a **selective** "family" (ex. Sulfur agents) or, specific agents (ex. Halogens, CO,  $N_2$ , etc.) to be measured.

This process enhances the separation and measurement of various  $H_2$  impurities by **BOTH** their GC elution **AND** light emission behavior. This reduces the detectors needed (and **cost**) of a Basic  $H_2$  Purity Analyzer.



### Summary - Epd Advantages for H<sub>2</sub> Fuel Impurity Measurements



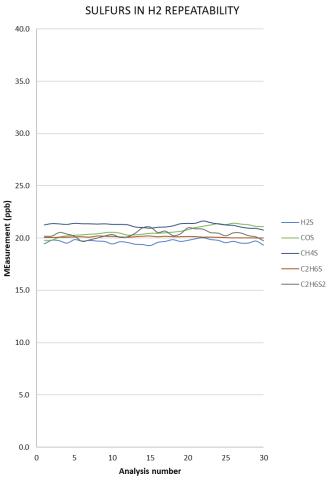
OWM: Optical Wavelength Module

CPM: Chromatographic Processing Module

Note: The plasma cell geometry is only for conceptual purpose and dimensions in this diagram are not representative of real design.



# Summary - Epd Advantages for H<sub>2</sub> Fuel Impurity Measurements


- Can detect a wide variety of target H<sub>2</sub> impurities (permanent gases, VSC's, VHC's, NMHC, VOX, BTEX,, RX's halogens, etc.).
- The carrier gas (He, Ar or  $N_2$ ) is used as the plasma discharge gas. No Need for UHP Air /  $O_2$  or flammable support gases.
- Range, LDR & MDL meets/exceeds SAE/ISO H<sub>2</sub> Fuel Spec Guidelines
- Calibration by 1-3 Cal Gas Mixtures: NCG's / VHC's/VSC's
- Low-maintenance. Continuous production use possible for long periods.
- **Robust** = Ideal for trace analysis in a plant process operation.



# Analytical GC/Epd TSC Performance Example

# Excellent RSD & Sensitivity for TSC

|                          | Results (ppb) |       |       |       |        |
|--------------------------|---------------|-------|-------|-------|--------|
| Analyse                  | H2S           | COS   | CH4S  | C2H6S | C2H6S2 |
| 1                        | 19.5          | 19.8  | 21.3  | 20.1  | 20.2   |
| 2                        | 19.8          | 19.8  | 21.4  | 20.1  | 20.2   |
| 3                        | 19.8          | 20.1  | 21.4  | 20.1  | 20.6   |
| 4                        | 19.5          | 20.2  | 21.3  | 20.1  | 20.4   |
| 5                        | 19.9          | 20.3  | 21.4  | 20.1  | 20.2   |
| 6                        | 19.7          | 20.3  | 21.4  | 20.1  | 19.7   |
| 7                        | 19.8          | 20.4  | 21.4  | 20.1  | 19.8   |
| 8                        | 19.7          | 20.4  | 21.4  | 20.2  | 20.0   |
| 9                        | 19.7          | 20.5  | 21.4  | 20.2  | 20.2   |
| 10                       | 19.5          | 20.6  | 21.3  | 20.2  | 20.4   |
| 11                       | 19.7          | 20.5  | 21.3  | 20.1  | 20.1   |
| 12                       | 19.6          | 20.3  | 21.3  | 20.1  | 20.1   |
| 13                       | 19.4          | 20.3  | 21.1  | 20.1  | 20.5   |
| 14                       | 19.4          | 20.4  | 21.0  | 20.2  | 21.0   |
| 15                       | 19.3          | 20.5  | 21.0  | 20.2  | 21.1   |
| 16                       | 19.6          | 20.5  | 21.1  | 20.1  | 20.6   |
| 17                       | 19.7          | 20.5  | 21.1  | 20.2  | 20.7   |
| 18                       | 19.9          | 20.6  | 21.2  | 20.1  | 20.3   |
| 19                       | 19.7          | 20.6  | 21.4  | 20.1  | 20.4   |
| 20                       | 19.8          | 20.8  | 21.4  | 20.2  | 21.0   |
| 21                       | 20.0          | 21.0  | 21.4  | 20.1  | 20.9   |
| 22                       | 20.1          | 21.1  | 21.7  | 20.1  | 20.9   |
| 23                       | 19.9          | 21.2  | 21.5  | 20.1  | 20.5   |
| 24                       | 19.8          | 21.4  | 21.4  | 20.1  | 20.5   |
| 25                       | 19.6          | 21.3  | 21.3  | 20.0  | 20.2   |
| 26                       | 19.7          | 21.4  | 21.2  | 20.0  | 20.5   |
| 27                       | 19.5          | 21.3  | 21.1  | 20.0  | 20.5   |
| 28                       | 19.5          | 21.3  | 21.0  | 20.0  | 20.3   |
| 29                       | 19.7          | 21.1  | 20.9  | 20.0  | 20.1   |
| 30                       | 19.3          | 21.1  | 20.8  | 20.0  | 19.8   |
| Average (ppb)            | 19.67         | 20.65 | 21.26 | 20.11 | 20.39  |
| Standard deviation (ppb) | 0.18          | 0.46  | 0.20  | 0.06  | 0.35   |
| MDL (ppb)                | 0.43          | 0.79  | 0.13  | 0.15  | 0.77   |
| Repeatability (%)        | 0.9%          | 2.2%  | 0.9%  | 0.3%  | 1.7%   |





# Field Experience to Date – GC/Epd System (China Olympics App)



- Process-Oriented Solution
   Fully field validated
   Process GC software
   No need for highly trained
- Safety

No support fuel or air / O<sub>2</sub> gas required

Only needs inert carrier /

discharge gas

High Sensitivity

Epd based Detector Technology

17

Robustness

Low maintenance, leak-free Rotor Valves

All passivated hardware

 Key specifications: LOD : < 4 ppb for ASSevicesC</li>

### **Summary / Conclusions**

The Challenge

| Constituent                                                       | Chemical<br>Formula | Limits    |  |
|-------------------------------------------------------------------|---------------------|-----------|--|
| Hydrogen fuel index<br>(minimum mole fraction)                    | H <sub>2</sub>      | ≥19.97%   |  |
| Total non-hydrogen gases                                          | TNHG                | 300       |  |
| Maximum concentration of                                          | individual co       | ntaninant |  |
| Water                                                             | H <sub>2</sub> 0    | 5         |  |
| Total hydrocarbons except<br>methans <sup>a</sup> (C1 equivalent) | тминс               | 2         |  |
| Oxygen                                                            | O2                  | 5         |  |
| Methana                                                           | CH4                 | 100       |  |
| lelium<br>litrogen                                                | He<br>N2            | 300       |  |
|                                                                   |                     | 300       |  |
| Argon                                                             | Ar 300              |           |  |
| Carbondioxide                                                     | CO <sub>2</sub>     | 2         |  |
| Carbon monoxide <sup>b</sup>                                      | CO 0.2              |           |  |
| Total sulfur compounds <sup>c</sup>                               | TSC ).004           |           |  |
| Formaldehyde                                                      | НСНО 0.2            |           |  |
| Formicacid                                                        | HCOOH 0.2           |           |  |
| Ammonia                                                           | NH <sub>3</sub>     | 0.1       |  |
| Halogesated compounds<br>(haloges ion equivalent) <sup>d</sup>    | TXC                 | 0.05      |  |
| Particulate Concentration                                         | NVR                 | 1mg/kg    |  |

#### The Analytical Solution

- Yes By TCD or Software (PLC) subtraction
- Yes GC/Epd + GC/TCD Option
- <u>Yes H<sub>2</sub>O Analyzer **Option**</u>
- <u>Yes **Std** GC/Epd Unit</u>
- <u>Yes O<sub>2</sub> Analyzer **Option**</u>
- <u>Yes **Std** GC/Epd Unit</u>
- Yes GC/TCD Option Yes – Std GC/Epd Unit
- <u>Yes **Std** GC/Epd Unit</u> Yes – **Std** GC/Epd Unit
- <u>Yes **Std** GC/Epd Unit</u>

<u>Yes – **Std** GC/Epd Unit</u>

- GC/Epd VOX Method Future Option
- GC/Epd VOX Method Future Option
- GC/Epd Method Future Option
- GC/Epd VXC Future Option

All current On-Line H<sub>2</sub> Analyzer methods meet/exceed SAE/ISO Method Performance Guidelines



### What's Next? – Future H<sub>2</sub> Analyzer Developments

- Development of an integrated GC/Epd Method / Module Options for VXC Target List / Fatty Acids (RCOOH) / C1-C2 Aldehydes (VOX) / NH<sub>3</sub> analysis
- Incorporation of purged Instrument sheds for housing On– Line H<sub>2</sub> Fuel Purity Analyzers + H<sub>2</sub> Truck Sampling Stations.
- Use of special Manifold-Connected Detector Tubes & H<sub>2</sub> Fuel ASTM 7606 type Samplers for quick, on-site H<sub>2</sub> Fuel Station screening tests for critical H<sub>2</sub> Fuel Impurities

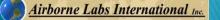




### THANK YOU FOR YOUR TIME AND ATTENTION!

# **QUESTIONS?**

**Please Contact us** 


Mark Taylor – <u>Mark.Taylor@airbornelabs.com</u>

Dr. Don Pachuta – <u>Don.Pachuta@airbornelabs.com</u>

Dr. Marc-Antoine Langevin – malangevin@asdevices.com

André Lamontagne – alamontagne@asdevices.com



