Soft Ionization Spectrometry (SIS):

One Step Closer to a "Magic Box" for Complete Bev-Gas Testing – AND Beyond

Presented at the ISBT Conference – San Antonio - 2007

Don Pachuta, Ph.D. & Joe Angeloni

Background - Review Industrial Sources of CO₂ + Unique Distribution Chain

- Natural Wells
- Fuel Combustion
- Bio-Fermentation
- Ammonia Production
- Chem-Process Off Gas

 Feedgas Source – Producer – Transport – Regional Depots – Transport – Storage – Production

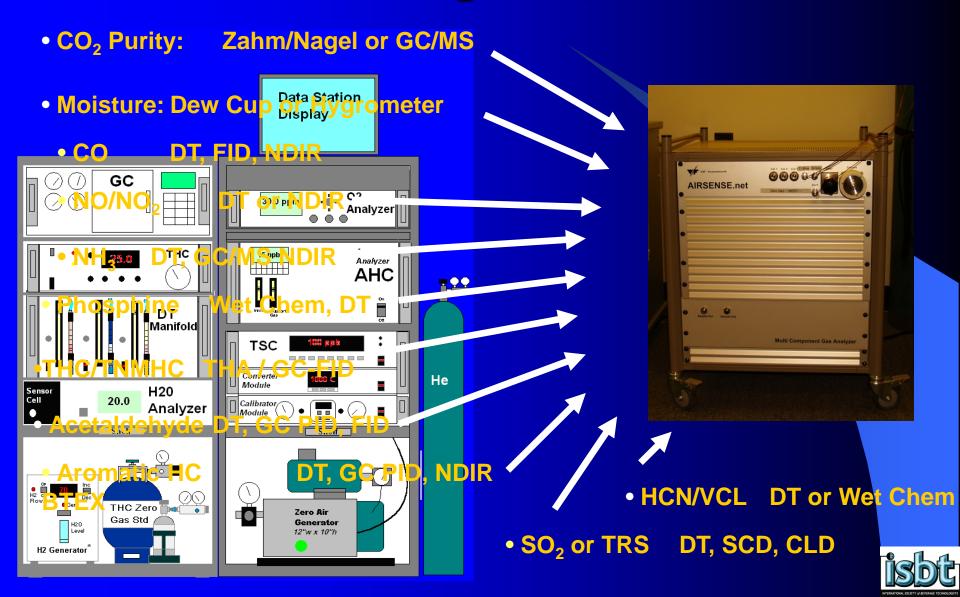
Many Potential Impurities

ISBT Bev-Gas Quality Challenges

 As beverage production grows, continuous quality testing becomes v important

CO₂ Quality Assurance is a complex technical challenge

 All dream of a "Magic Box" that can quickly monitor the *entire ISBT Impurity List*

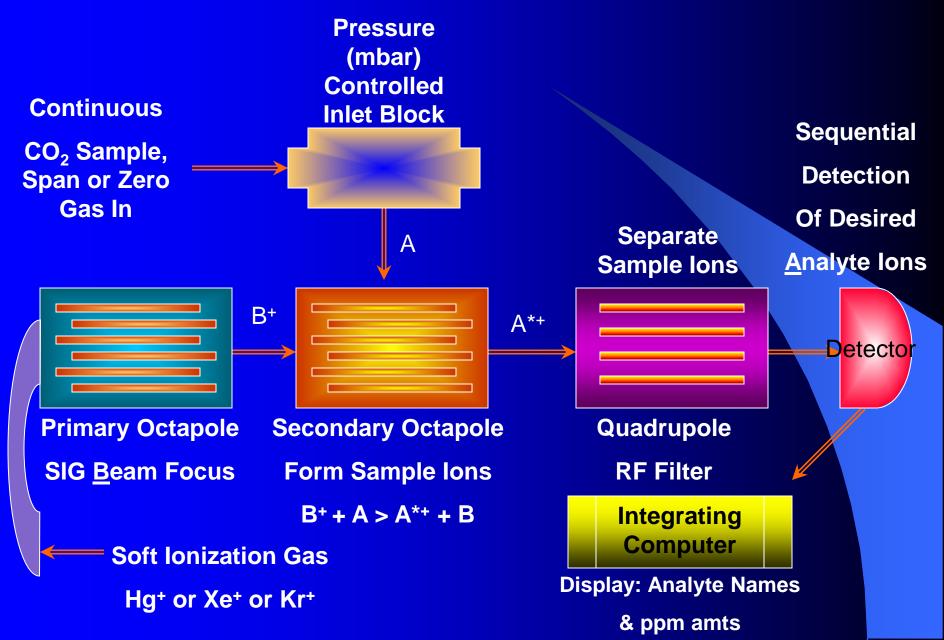

ISBT CO₂ Purity Guidelines

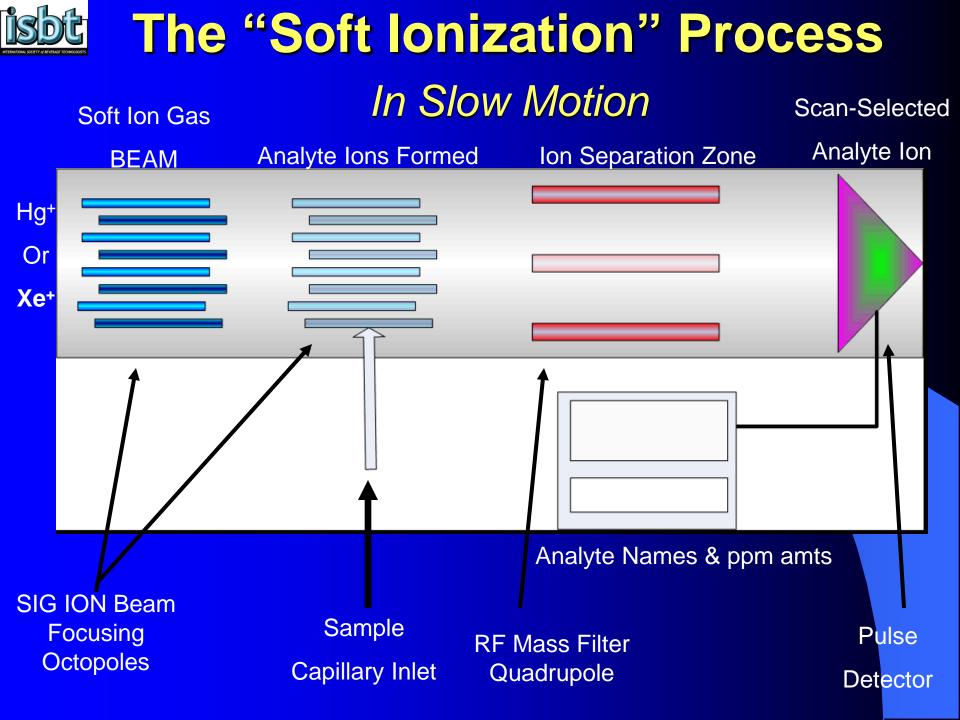
"The List"

ľ				1	1
		D	ļ	IJ	L
	INTERNATI	ONAL SOCIE	TY of BEVE	RAGE TEO	HNOLO

CO ₂ Purity	99.9% min	Process
Moisture (H ₂ O)	20 ppm v/v max	Process
Oxygen (O ₂)	30 ppm v/v max	Sensory
Carbon Monoxide (CO)	10 ppm v/v max	Process / Regulatory
Ammonia (NH3)	2.5 ppm v/v max	Process
NO / NO ₂	2.5 ppm v/v (ea) max	Regulatory
Non-Volatile Residue (NVR)	10 ppm x/x max	Sensory
Non-Volatile Organic Residue (NVOR)	5 ppm w/w max	Sensory
Phosphine (PH ₃)	0.3 ppm v/v max	Regulatory
Total Volatile Hydrocarbons (THC) & TNMHC	50 ppm v/v max – including 20 ppm v/v TNMHC	Sensory
Acetaldehyde (AA)	0.2 ppm v/v max	Sensory
Aromatic Hydrocarbon Content (AHC)	20 ppb v/v max (as benzene)	Regulatory
Total Sulfur Content (TSC*) less SO ₂	0.1 ppm v/v max	Sensory
Sulfur Dioxide (SO ₂)	1 ppm v/v max	Sensory
Odor of Snow	No foreign odor	Sensory
Appearance in Water	No color or turbidity	Sensory
Odor & Taste in Water	No foreign odor/taste	Sensory
Supplemental HCN / Vinyl Chloride	None detectable-best method	Report

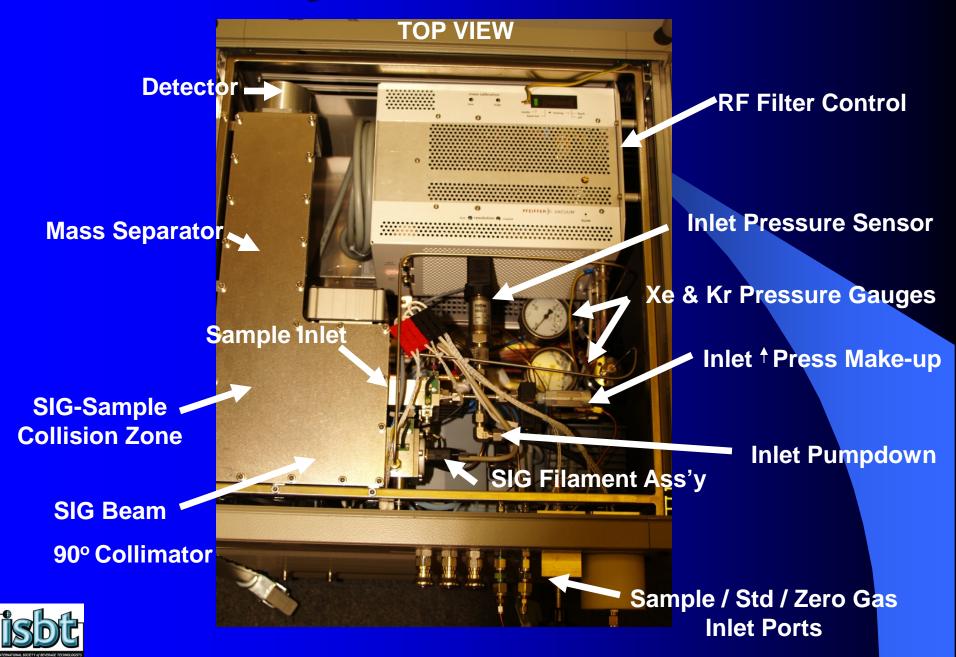
Where Does SIS Technology *Fit-In* vs Traditional ISBT CO₂ Analyzers?


What Is Soft Ionization Spectrometry?


- SIS is a Mass Selective Analyzer:
- CO₂ Sample is continuously injected into a Low Energy lon² Beam of Hg⁺ or Xe⁺ or Kr⁺ = soft ionization gas (SIG)
- Sample impurities (analytes) softly fracture into only a few characteristic ion fragments
 - Fragments are size-separated by a scanning RF field. Software-selected analyte ions are counted by a pulse detector
 - SIS Display = "impurity hit list name + ppm level" total analysis time = a few seconds
- So, Tell me more about how this SIS thing works



The "Soft Ionization" Process



SIS Analyzer System

SIS Analyzer – Under-the-Hood

SIS - a "New Application" of an Established Technology

• SIS is a relatively "mature" technology

• Established Applications:

- Environmental Air Testing
- Engine Exhaust / Catalyst / Diesel Studies
- Medical e.g. Disease Diagnosis by Patient Breath Analysis

- European + Emerging USA/Canada CO₂ Supplier QC

- PET bottle recycling & mfg quality testing*
 - Gaseous Headspace Food & Beverage Testing (Fragrance ID* & Brand Profiling*)
 - Other Applications where many analytes might exist for only milliseconds & must be quickly ID'd & quantified
 - * AND Beyond???

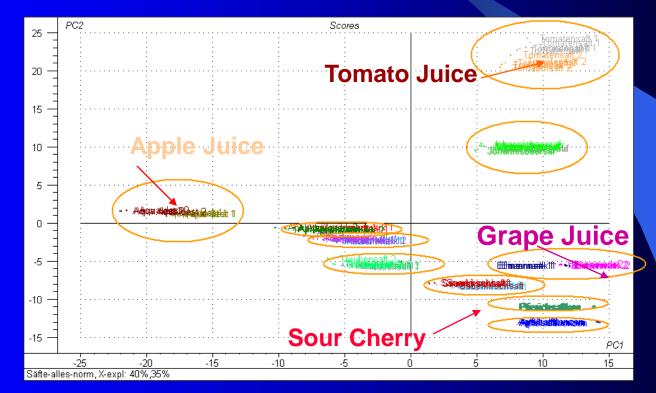
PET Bottle Recycling-High Speed QC Testing*

- (optional) 3 Cap recognition (optional)
- 4 Label monitoring (optional)
- 5 Rejection at machine infeed
- (optional) 6 Mass spectrometer
- 7 Colour spectrometer
- 8 Rejection of contaminated containers
- 9 Rejection monitaring of test containers
- 10 Collecting container
- Neutral air is blown into the container.
 The mixture of air
- and gas is drawn off and examined for contaminations.

Non-contact sampling

Political Politicae Politicae Politicae Politicae Politicae Politicae Politi

KRONES Aircontronic Compact | 3


*AND Beyond – for another day

Fragrance Mass Moment ID Profile*

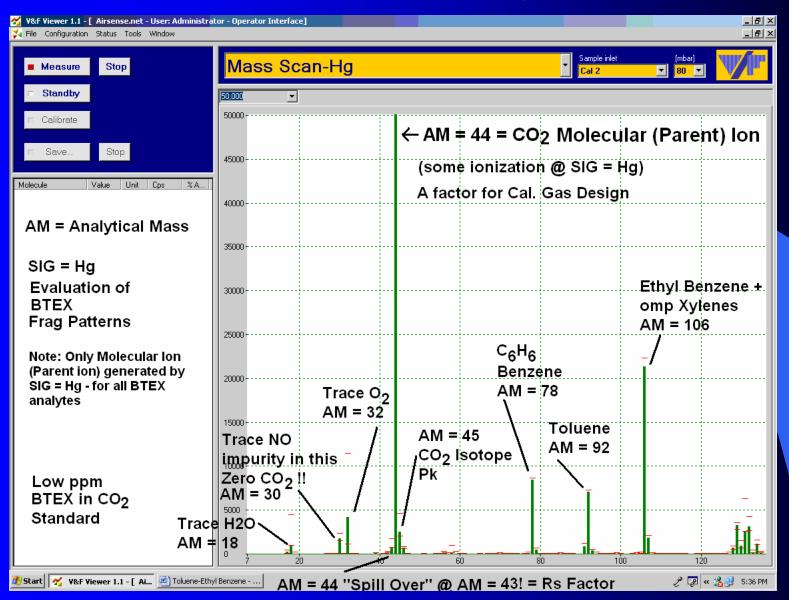
— =

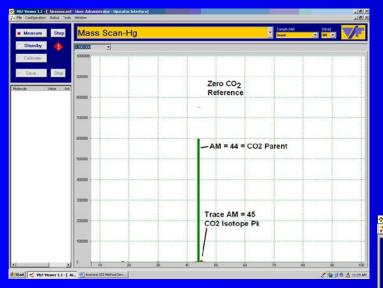
Apple juice, peach juice, pear juice, grape juice, apricot juice, tomato juice, sour cherry juice, currant juice, water

*AND Beyond – for another day

So, How might SIS work in the "Real World" of Bev-Gas Testing?

Our R&D Objectives & Current Focus

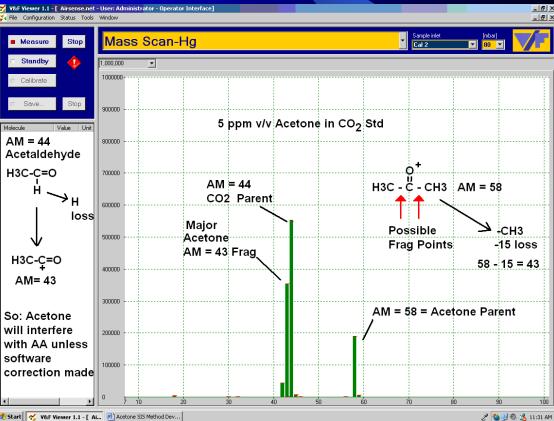

- Develop SIS Methods (SIG, AM, Scan, Count) for key ISBT-listed CO₂ impurities
- Evaluate: LDR / Sensitivity / Precision / Accuracy & DL vs ISBT Method Guidelines
- Identify potential interferences develop corrective actions
- Evaluate: Analysis Calibration Strategy + SIS Ops & Maintenance Requirements



SIG & AM Selection Process

Sometimes its "easy"

SIG & AM Selection Process – The "Frag Factor"


Basic SIG & AM Studies

Needed to ID potential Interferences for design of

Appropriate Software & Calibration Routine

Corrective Measures

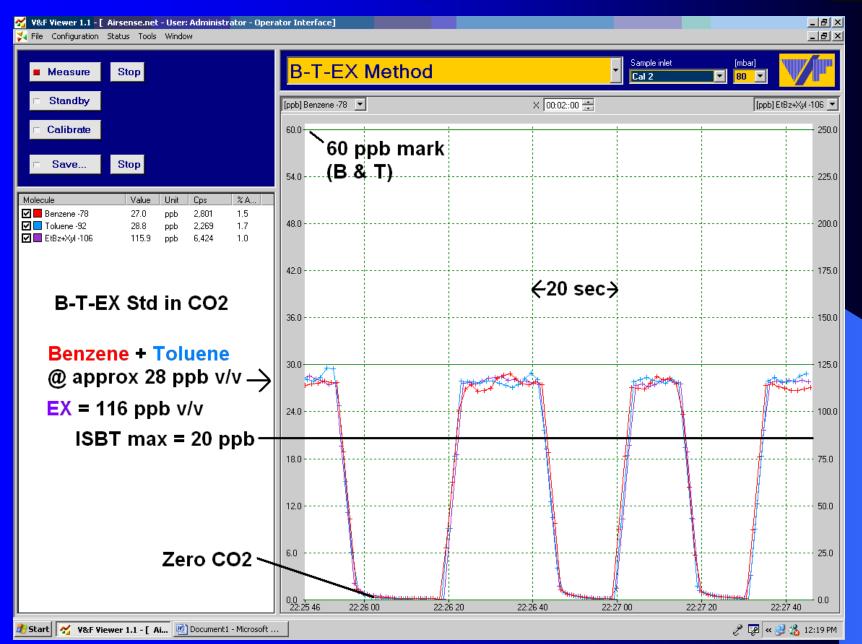
(Sometimes its not-so-easy)

SIS - Aromatic Hydrocarbon (AHC) Data

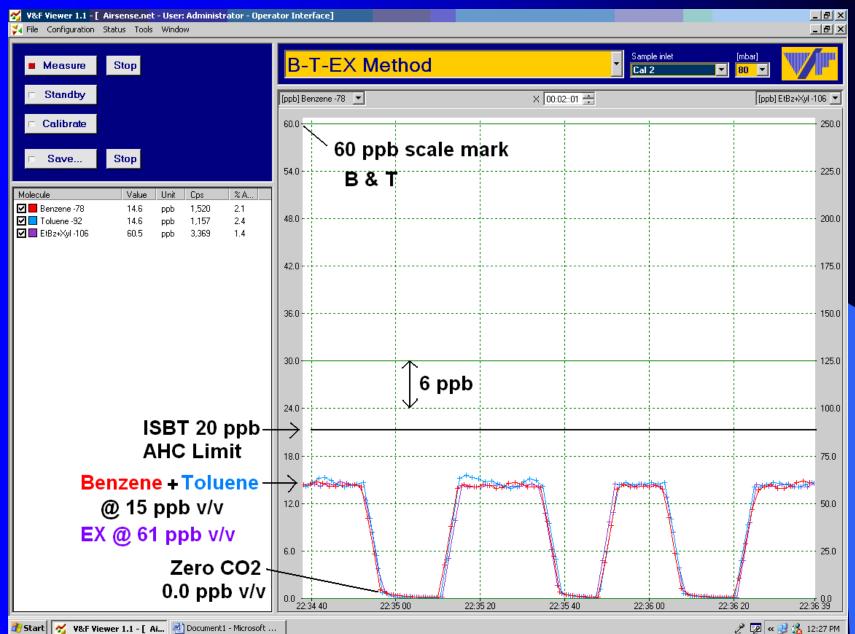
(ISBT CO₂ Limit = 20 ppb v/v as Benzene + report all other target AHC's)

Our Results

AHC	SIG	AM	LDR ppb v/v	DL ppb v/v	Interference (s)
Benzene	Hg	78	LT 0 - 1000+	LT 1	None found-to-date
Toluene	Hg	92	LT 0 - 1000+	LT 1	None found-to-date
Ethyl Benzene +	Hg	106	1 -1000+	LT 5	None found-to-date Note: EBz + Xylenes measured as Total
o,m,p Xylenes					measured as Total


Speciation Information B-T-EX

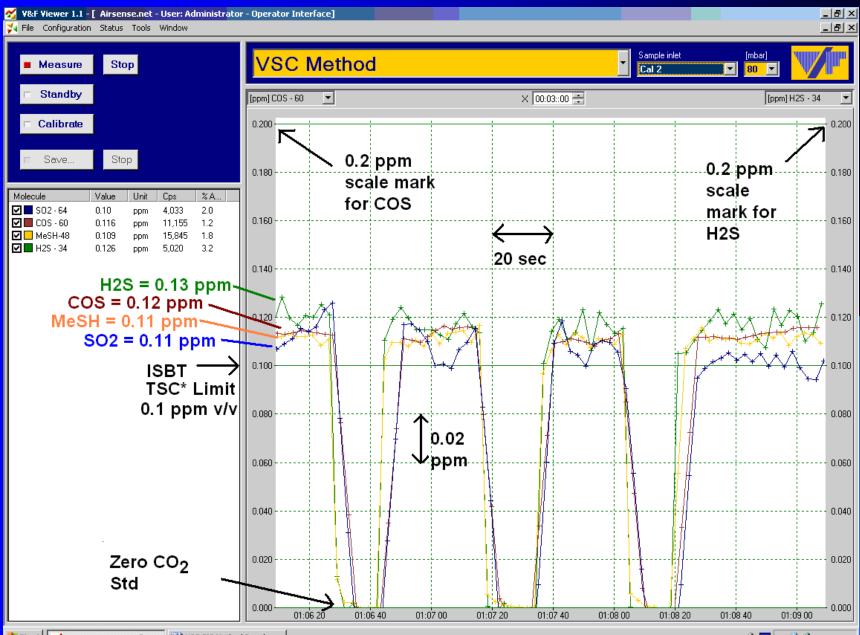
Use of Benzene Cal Gas for Indirect Cal of TEX works v. well


isbt

SIS Data: B-T-EX in CO₂ @ 28 ppb v/v level

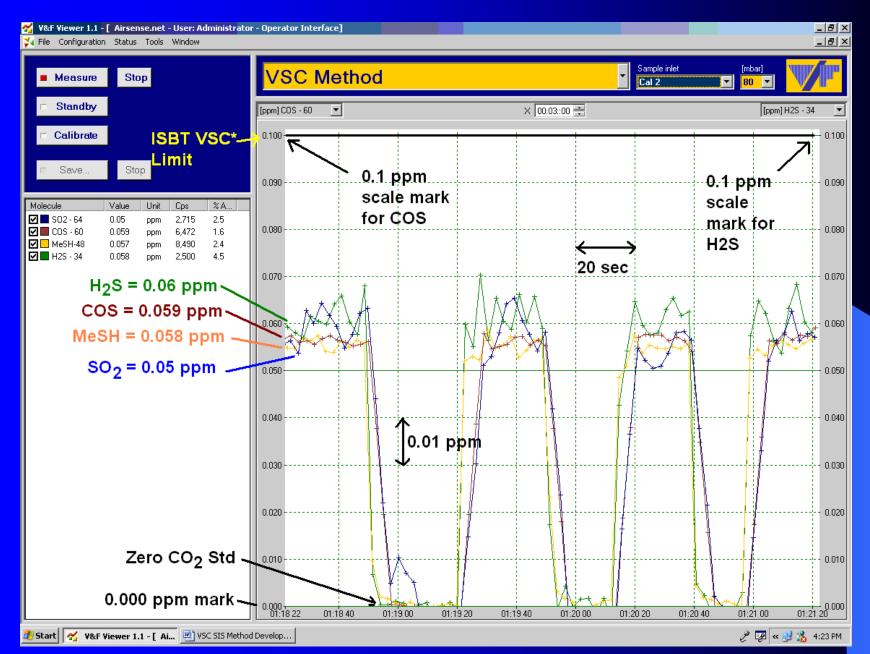
SIS Data: B-T-EX in CO₂ @ 15 ppb v/v level

SIS - Volatile Sulfur Compounds (VSC) Data

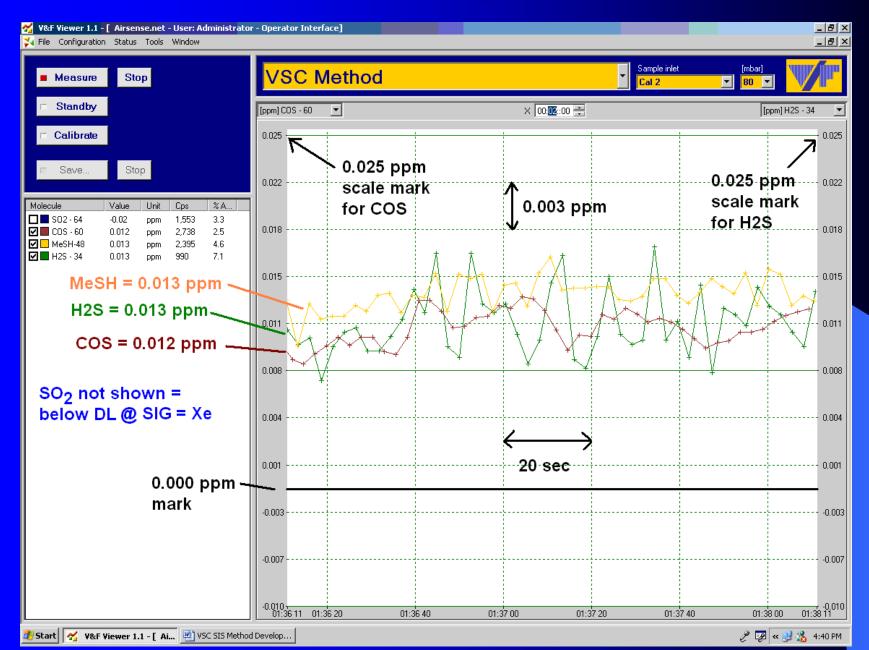

ISBT Limit = 0.1 ppm v/v as TSC* = sum of VSC target impurities excluding SO₂, SO₂ = 1 ppm v/v max

Useful Speciation information achieved

VSC	SIG	AM	LDR ppb v/v	DL ppb v/v	Interference (s)
H ₂ S	Hg	34	0 – 1000+	LT 5	PH ₃ @ AM = 34 (Note: PH ₃ = Rare)
COS	Хе	60	0 – 1000+	LT 5	None found-to-date
SO ₂	Хе	64	0 – 1000+	5	None found-to-date
MeSH	Hg	48	0 – 1000+	LT 5	None found-to-date
CS ₂	Hg	76	0 – 1000+	LT 5	None found-to-date
DMS + EtSH	Hg	62	0 – 1000+	LT 5	Vinyl Chloride (VCL) AM = 62, correct using AM = 64 isotope (Note: VCL = rare) Note: Measures Total DMS + EtSH



SIS Data: VSC in CO₂ @ 110 ppb v/v level

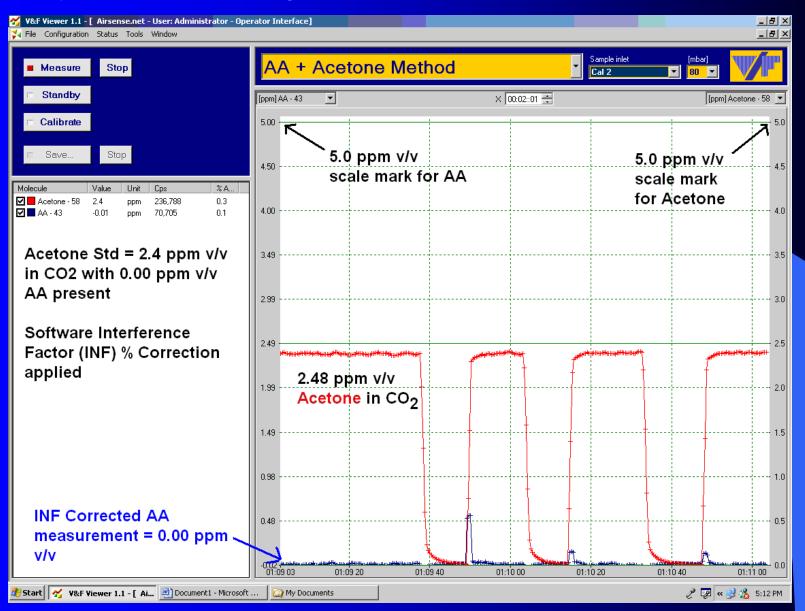


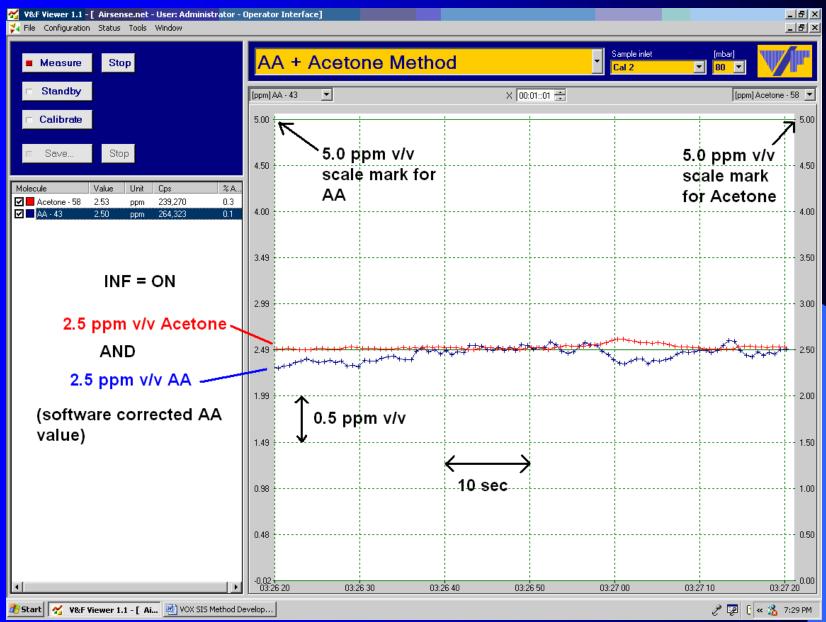
SIS Data: VSC in CO₂ @ 60 ppb v/v level

SIS Data: VSC in CO₂ @ 13 ppb v/v level

SIS - Volatile Oxygenated Compounds (VOX) Data

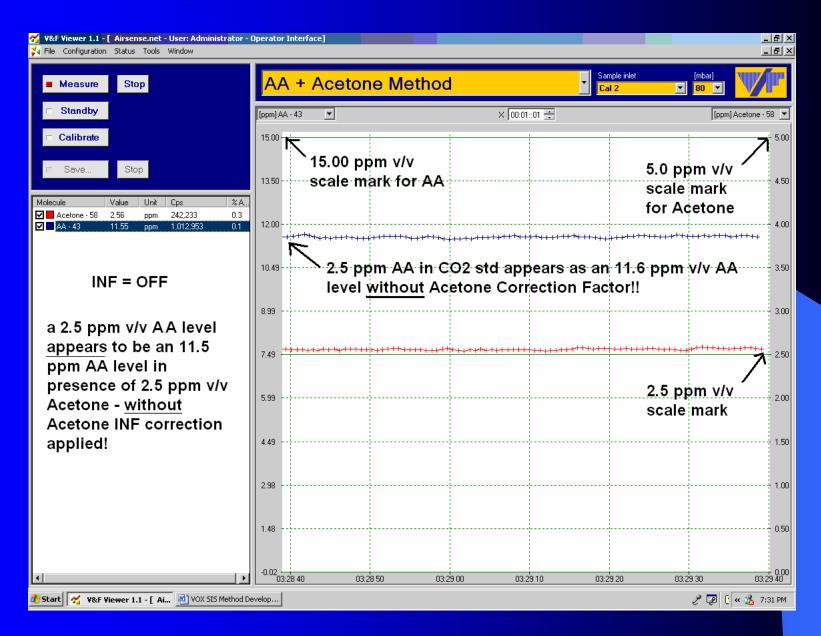
ISBT Limit = 0.2 ppm v/v as Acetaldehyde (AA) + Speciation information needed for THC/TNMHC calcs etc.


VOX	SIG	AM FR = Frag	LDR ppm v/v	DL ppm v/v	Interference (s)
AA	Hg	43 ^{fr}	0 - 5+	LT 0.05	Acetone = Major INT, i-PA = INT, i-Butanes = INT, n- Butane= minor INT
DME	Hg	46	0 - 5+	LT 0.05	No effect on AA, NO ₂ = INT
МеОН	Хе	31 ^{fr}	0 - 5+	LT 0.05	No effect on AA, EtOH / nPA = INT
EtOH	Hg	45 ^{fr}	0 – 5+	LT 0.05	No effect on AA, DME = minor INT
N-Butanol	Hg	56 ^{fr}	0 - 5+	LT 0.05	No effect on AA
Acetone	Hg	58	0 - 5+	LT 0.05	Major AA effect, Buta <mark>nes =</mark> INT
EtOAc	Hg	70 ^{fr}	0 - 5+	LT 0.05	No effect on AA

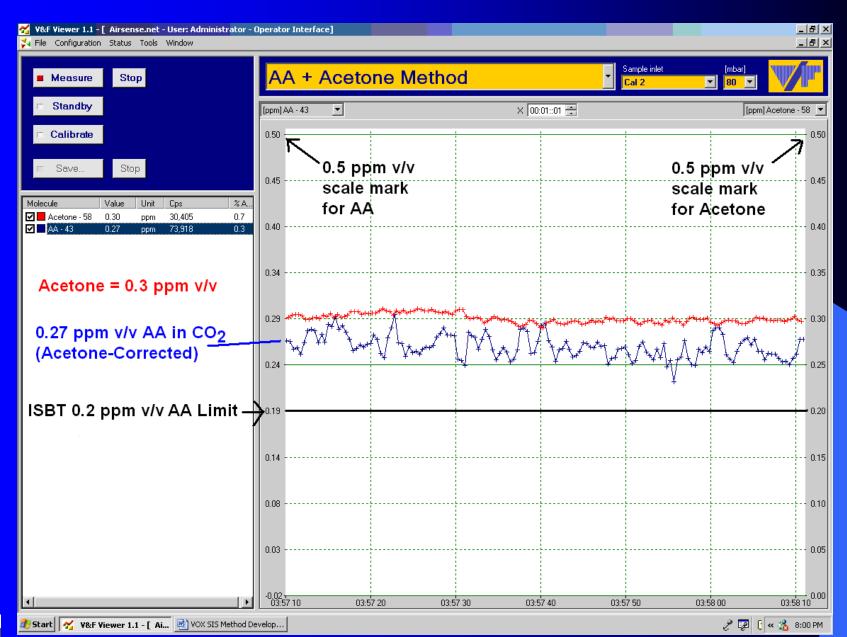

Other VOX impurities studied to date: n / i -Propanols, i -Butanols, Ethylene Oxide

SIS Data: VOX in CO₂ @ 2.5 ppm v/v Acetone / 0.00 AA – INF Corrected

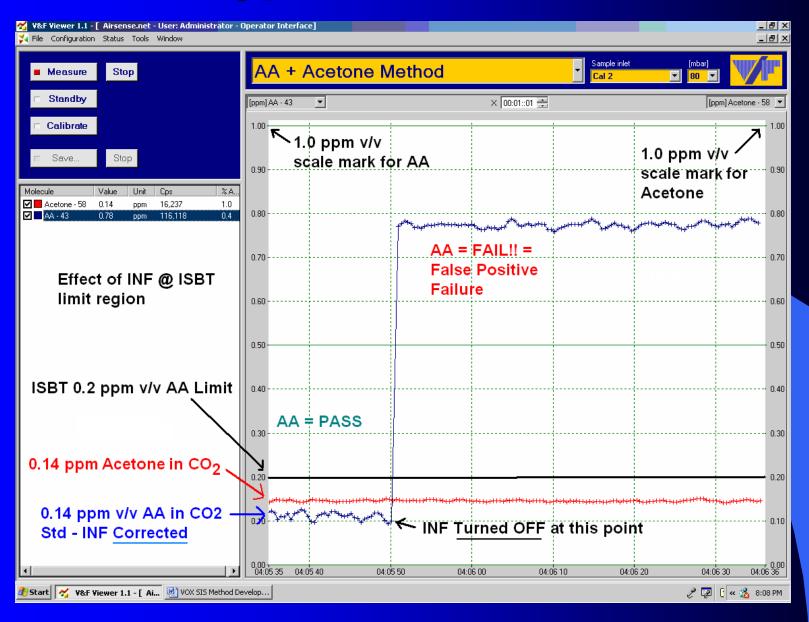
Key to Success is having accurate Interference Correction Data



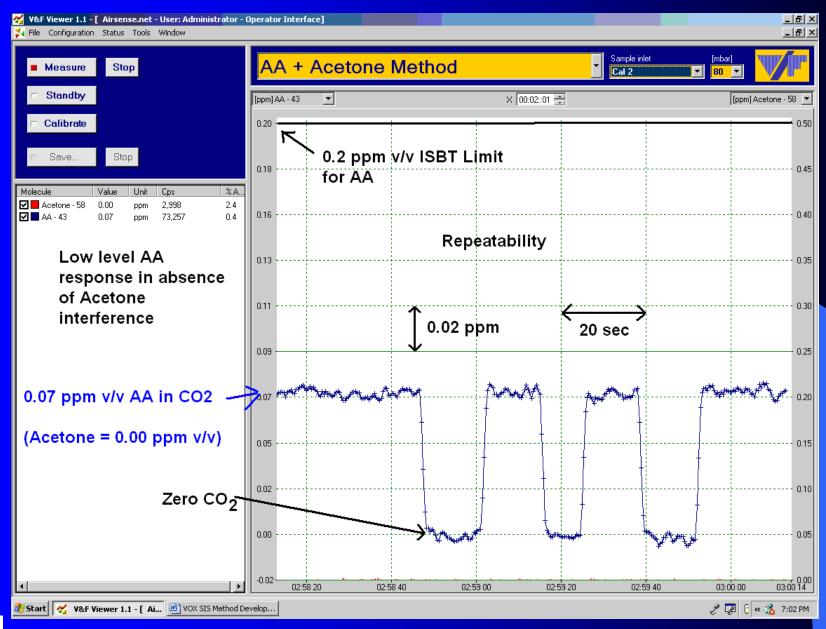
SIS Data: VOX in CO₂ @ 2.5 ppm v/v Acetone + AA – INF Corrected



SIS Data: VOX in CO₂ @ 2.5 ppm v/v Acetone/AA if NO INF Correction



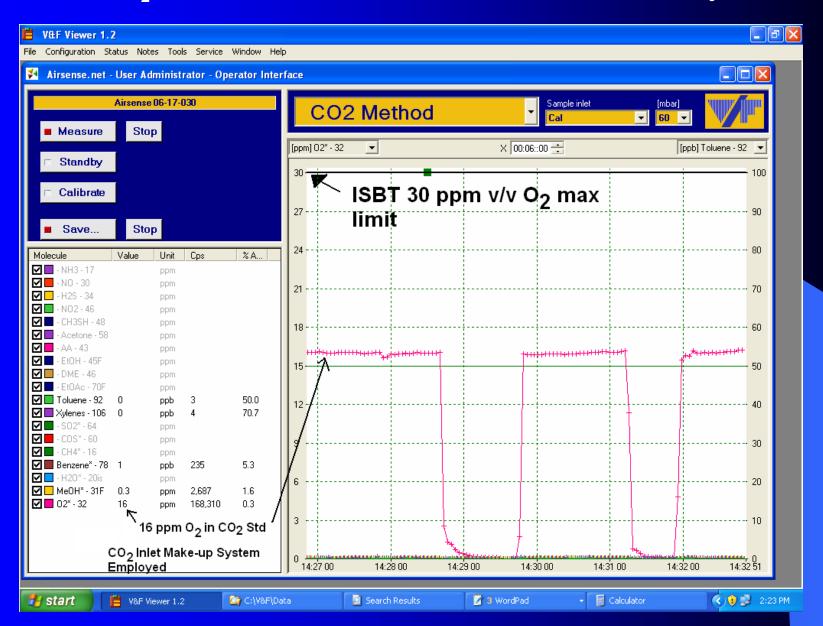
SIS Data: VOX in CO₂ @ 0.27 ppm v/v AA + Acetone INT Correction



SIS Data: VOX in CO₂ @ 0.1 ppm v/v AA + Acetone INF ON/OFF

SIS Data: VOX in CO₂ @ 0.07 ppm v/v AA – if No Acetone present

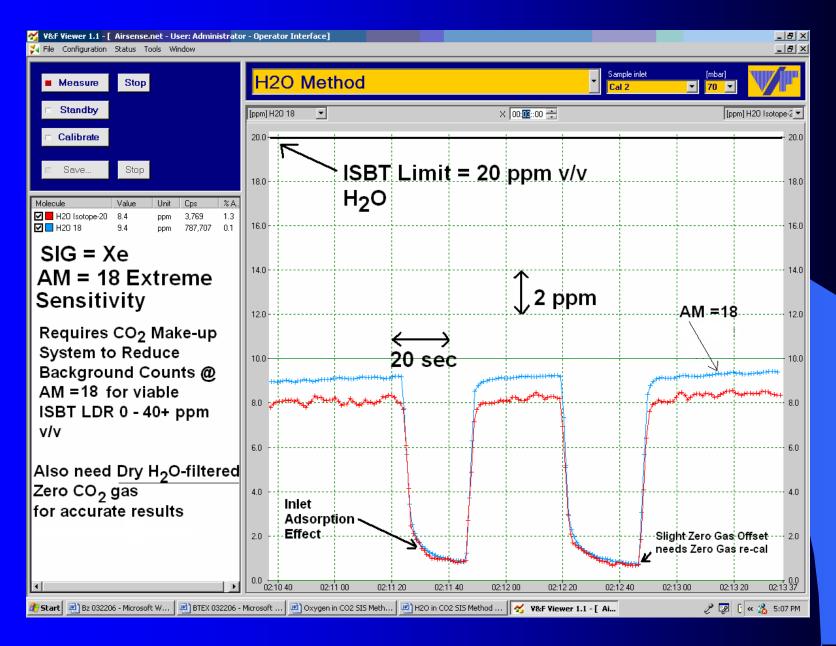
SIS - Volatile Hydrocarbons (VHC) Data


ISBT Limit = 50 ppm v/v THC as Methane including 20 ppm v/v max as Total Non-Methane HC's

VHC	SIG	AM fr= Frag	LDR ppm v/v	DL ppm v/v	Interference (s)
CH ₄	Хе	16	0 – 100+	LT 0.5	None found-to-date
Ethane	Хе	30	0 – 20+	LT 0.05	NO = INT (AM = 30)
Propane	Хе	29 ^{fr}	0 – 10+	LT 0.05	Ethane = Minor INT, ETO = INT @ Frag = 29, n-Butane = Minor INT
N-Butane	Hg	58	0 - 5+	LT 0.05	Minor INT for AA
N-Pentane ¹	Hg	42 ^{fr}	0 - 5+	LT 0.05	ID @ AM = 72 Parent

Note 1: n-Pentane C-C-C-C-C → C-C-C (AM=42)

Other VHC's not studied-to-date


SIS Data: O₂ in CO₂ @ 16 ppm v/v (CO₂ MK-UP System Employed) Use of CO₂-based Cal Gas Stds is recommended for all Analytes

SIS Data: H₂O in CO₂ @ 8 ppm v/v Level

Use of Indirect H_2O Cal Method @ SIG = Xe is viable option

SIS – Data for Other ISBT Listed CO₂ Impurities

Impurity	SIG	AM FR = Frag IS = Isotope	LDR ppm v/v	DL ppm v/v	Interference (s)
0 ₂	Хе	32	0 - 40+	LT 1	None found-to-date
H ₂ O	Хе	18	0 – 30+	LT 1	None found to-date
NO	Hg	30	0 - 5+	LT 0.05	None found-to-date
NO ₂	Hg	46	0 - 5+	LT 0.05	DME = INT AM = 46
NH ₃	Hg	17	0 - 5+	LT 0.05	None found-to-date
HCN	Хе	27	0 - 5+	LT 0.1	VCI = INT HCN Lower DL @ SIG = Xe + Kr
VCI	Hg	64 ^{is}	0 - 5+	LT 0.05	Use VCI Isotope AM = 64

Note 1: PH_3 study not completed SIG = Hg, AM = 34

Note 2: CO work was not successful for this ISBT application

SIS Applicability to ISBT CO₂ List

ISBT LISTED IMPURITY	SIS Measurable?	<u>Comments</u>
CO ₂ Purity	NO (but positive CO ₂ ID)	Can't do N ₂ , H ₂ , Ar
Moisture (H ₂ O)	YES (use CO ₂ Make-up Gas)	Can go sub-ppm range
Oxygen (O ₂)	YES (use CO ₂ Make-up Gas)	Requires O_2 in CO_2 Stds
Carbon Monoxide (CO)	NO	Poor Sensitivity issues
Ammonia (NH ₃)	YES	Needs passivated inlet
NO / NO ₂	YES (+ speciation)	Some minor INF's (not common)
Non-Volatile Residue (NVR)	NO	Can't do particulates / non volatiles
Non-Volatile Organic Residue (NVOR)	NO (but C6+ = Yes)	Can't do V. Hi MW oils/grease
Phosphine (PH ₃)	YES (+ H ₂ S) PH ₃ = RARE	Can't distinguish from H ₂ S
Total Volatile Hydrocarbons (THC) & TNMHC	THC = YES TNMHC = YES	Get CH₄ + Algorithm Sum of all TNMHC's vs THA-FID signal
Acetaldehyde (AA)	YES (+ VOX speciation)	Needs corrections for INF's
Aromatic Hydrocarbons (AHC)	YES (B-T-EX)	V good precision / low DL's no known INF's
Total Sulfur Content (TSC*) less SO ₂	YES (+ speciation)	Algorithm Sum of VSC's
Sulfur Dioxide (SO ₂)	YES	Easily Speciated from COS
HCN	YES	V. Low DL no common INF
Vinyl Chloride	YES	V Low DL

SUMMARY

0009000

SIS Performance vs Traditional Bev-Gas Analyzers

- Speed: Advantage vs many analyzer systems (e.g. LT 1 min vs 10-20 min for full ISBT analyte list)
- Footprint: Good vs common analyzer rack systems
- Versatility: Flexible list of monitored impurities vs most traditional Analyz
- Speciation Capability: Less than GC but advantages vs single analyte analyzers. Minimizes DT use.
- <u>Measurement Quality</u>: LDR / Precision / DL: equivalent or superior to traditional analyzers
- Freedom from Interferences: Mixed Application dependent: For AHC is superior to many systems. Awareness of interferences is key to success (e.g. AA). Proper SIG / AM selection, Sequencing + Software-correction routines are effective in most cases.
- Calibration: Indirect Calibration = advantage. Recommend CO₂ based Cal gas – a disadvantage
- Support: Does not require He, N₂, H₂, Zero Air or expert/skilled operators
- Maintenance: Need for periodic SIG gas replacement + SIG Filament changes

Where do we go from Here?

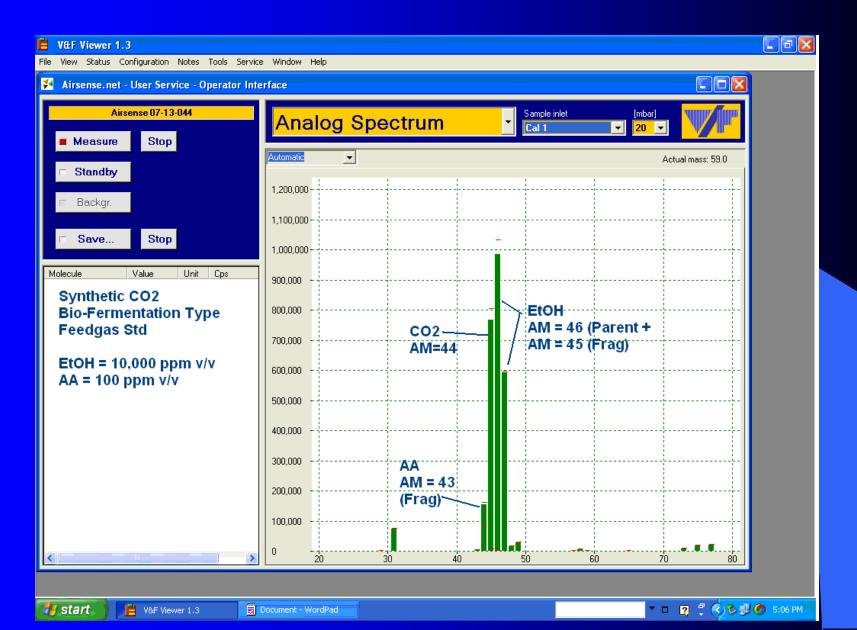
R&D – New CO₂ SIS Methods Development Feedgas + *in-Process Gas* (e.g. Before/After Filter Beds = instant bed breakthrough warning) + <u>Captured</u> Recycle Cas use

-Trace O₂ in Bev-Grade N₂ (NEW ISBT N₂ Guidelines coming)

- Impurities in PET bottles, preforms & resins (e.g. AA levels)

SIS-based Methods for trace aromatics in new / aged packaged beverages (shelf-life / stability testing)

-AND Beyond??


CO₂ Feedgas Method R&D - NatWells

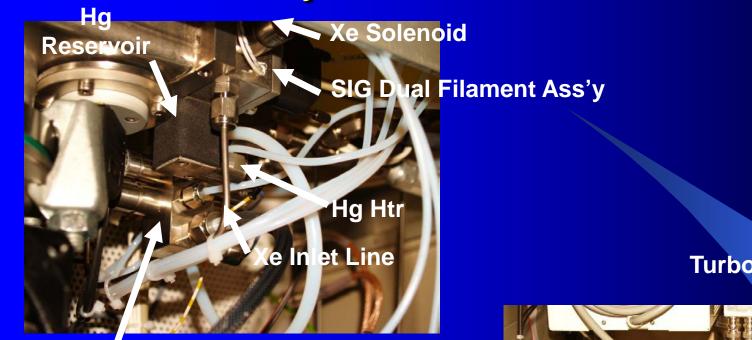
V&F Viewer 1.3 Image: Service Window Help								
🔀 Airsense.net - User Administrator - Operator Int	rface							
Airsense 07-13-044	Analog Spectrum Sample inlet [mbai]							
Measure Stop		Actual mass: 51.0						
☐ Standby	500.000+							
⊫ Backgr.								
⊂ Save Stop	450,000							
Molecule Value Unit Cps %A	400,000 CH4							
Synthetic CO2 Natural Well	350,000 AM = 16							
Type Feedgas Std	300,000 CO2							
CH4 = 16,900 ppm Ethane = 350 ppm	AM = 44							
Propane = 133 ppm i-Butane = 53 ppm	C2H4 200.000 AM = 28							
n-Butane = 53 ppm i-Pentane = 27 ppm	n-Pentane AM=72	e						
n-Pentane = 27 ppm	150,000 Be	nzene						
Hexanes+ = 18 ppm	100,000 - Ethane AM=58	1 = 7'8						
Benzene = 50 ppm	50,000 AM = .30							
		90 100						
	<u>10 20 30 40 30 60 70 80</u>							
🐮 start 📄 📋 V&F Viewer 1.3 🛛 📓 Calculator	My Documents 🛛 🙀 Well_syn_std_Bz 🗸 🗖 👰	🖞 🌾 🛃 🌑 🎇 5:50 PM						

CO₂ Feedgas Method R&D – NatWells Method Optimization In-Progress

📕 V&F Viewer 1.3				- 7 🗙				
File View Status Configuration Notes Tools Service Window Help Airsense.net - User Service - Operator Interface								
Airsense 07-13-044	Feed-CO2-ISB	Sample inlet	[mbar]					
Measure Stop								
🗆 Standby	[ppm] Benzene*	× 00:03::30	[ppm] CH4*					
🗆 Calibrate	100							
	90		27,000					
Save Stop								
Molecule Value Unit Cps %	80		24,000					
☑ CH4* 58 ppm 2,021 2	70 HH HH HH	╴ ╷╡┎┍┼┥┝┝┙[╏]╘╕[╋]╎╵╵╘╻┍╘ ┢╋ ┍╽┍┙┍┙┍ ╋╍┱┙╵╵╵╴╘┲┥┼╽						
☑ Benzene [*] 0 ppm 287 4	PHILIPPINE PHILIPPINE	444 HI H H H H						
	60		18,000					
	50		15,000					
	40		12,000					
	30		9,000					
	20		6,000					
	10							
		t t						
<>	0 20:46 00 20:4	7 00 20:48 00	20:49:00 20:49:23					
🛃 start 🛛 📓 Calculator 🏻 🔄 V&F	Data Files 1.3 📙 V&F Viewer 1.3	1.3	- D 🛛 🔇 🕹 🖉 🖉	2:46 PM				

CO₂ Feedgas Method R&D - BioFerm

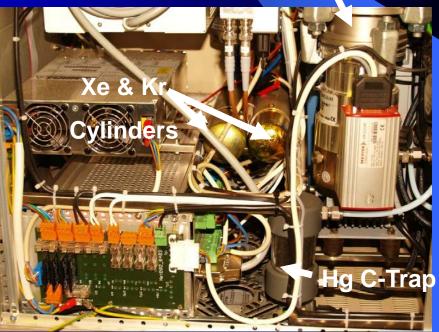
Our Special Thanks to:


Mr. Rodney Resch & Mr. Walter Woodland – V&F Instruments

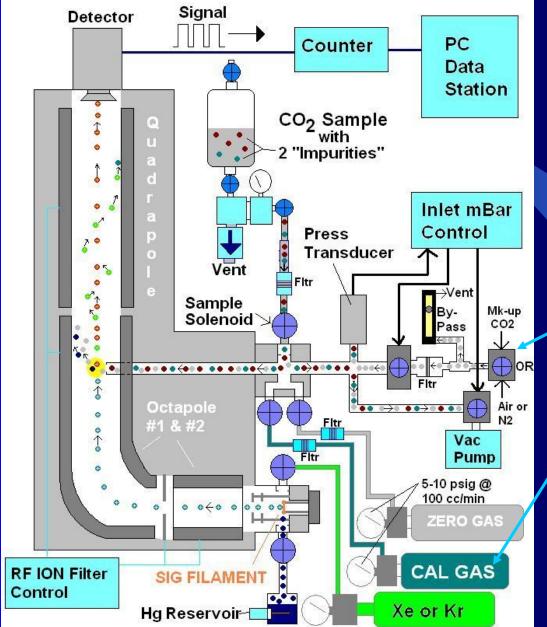
Questions??

Airborne Labs International

SIS Analyzer – Under-the-Hood



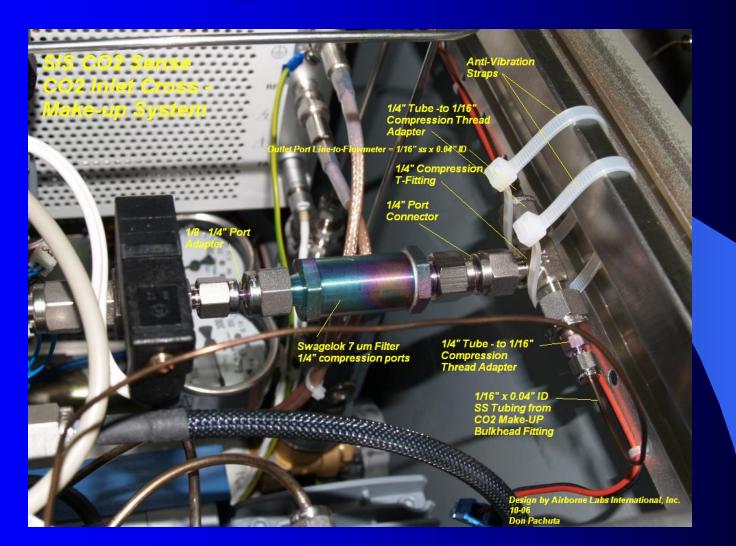
Sample / Span Gas / Zero


Gas Inlet Manifold & Solenoids

Left Side View→

Turbo-Pump

The "Soft Ionization" Process — NEW CO₂ System



New Inlet Pressure Make-Up System Developed

3 Optimized ISBT Cal Gas Stds in CO₂ Developed

New CO₂ Make-up System

Required for accurate trace O₂ + H₂O SIS measurements

NEW - ISBT List SIS Calibration Strategy (3 Combo Cal Std Cylinders – CO₂ Balance Gas + Certified – 3-stage filtered CO₂ Zero Gas Std)

SIS Cal Std #1: Benzene – COS – AA – CH₄

SIS Cal Std #2: Acetone – DME – DMS – O₂

SIS Cal Std #3 Option 1: CO – Ethane – MeOH – NO₂

Oľ

SIS Cal Std #3 Option 2: CO – n-Pentane – EtOH – NO₂

Certified Zero Gas – *ISBT-List* Tested 20 lb Tank of High I bank Filtered (H₂0 – Charcoal – O₂ scrubber cartridges)

List of key Cal Std analytes selected -- based on *SIG Gas* + *AM's* used + *interference correction* routines used & ability to act as *accurate surrogate stds* for <u>other</u> ISBT List target analytes (e.g. H₂S, SO₂, NO, TEX, H₂O, HCN, etc)

NEW THC / TNMHC / TCS*+ TOVO Algorithms Required for SIS data correlation to existing (historical) THC (FID), GC and TSC Analyzer Data + ISBT / Bottler Impurity Guideline Limits

THC (FID) Equivalence: R_{fi}'s of all common THC (FID) active impurities (e.g. C2-C5 VHC's + VOX + VSC targets established & algorithm written – to convert SIS data into THC(FID) "equivalence as CH₄" values + TNMHC calculated (THC – CH₄).

TSC* Equivalence: SIS Algorithms written to properly calculate TSC* value (based on ISBT Method 14.0) of all SIS speciated VSC targets – less SO₂.

TOVO (Total "Other" Volatile Oxygenates) Equivalence: SIS Algorithm written to calc TOVO from SIS speciated VOX data.

