

$\begin{array}{l} \textbf{RECENT DEVELOPMENTS IN ION MOLECULE} \\ \textbf{REACTION} - \textbf{MASS SPECTROMETRY} \\ \textbf{FOR CO}_2 \textbf{ QUALITY MONITORING} \end{array}$

Front Door to Back Door

BevTech'16, Ft. Myers

Dr. Siegfried Praun, Arno Weissnicht, Dr. Christian Leidlmair, Hannes Zingerle & Alexander Genuin M.Sc. (V&F Analyse- und Messtechnik GmbH)

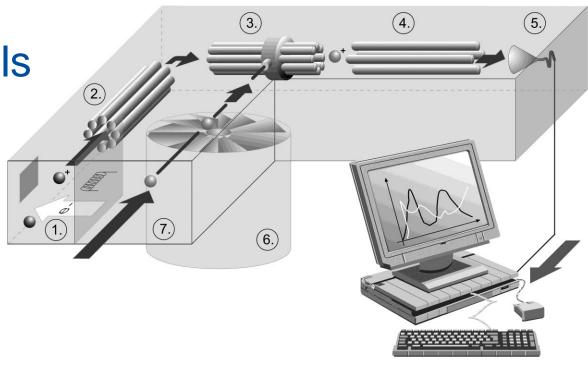
And

Mark Taylor, Nicole James & Dr. Don Pachuta (Airborne Labs International, Inc)

- IMR MS Technology using a *Dual Capillary* Inlet System
- Latest Applications
 - Final Product ISBT Purity Gas Monitoring
 - \circ Catox Optimization
 - Fermentation Plant Feed- In-Process Final Product
 - Natural Well Feed Gas Profiles & GC Correlation
 - TSC Reductive Converter *Extended* Feed Gas Applications

Beverages / Foods / Packaging

- CO₂
- Beverages
- Food
- Flavors
- Flavors: good/bad breath + nose-space
- Mold in beverages, jelly
- PET Bottle Contamination
 - Monitoring



IMR-MS Technology

Use of discrete energy levels

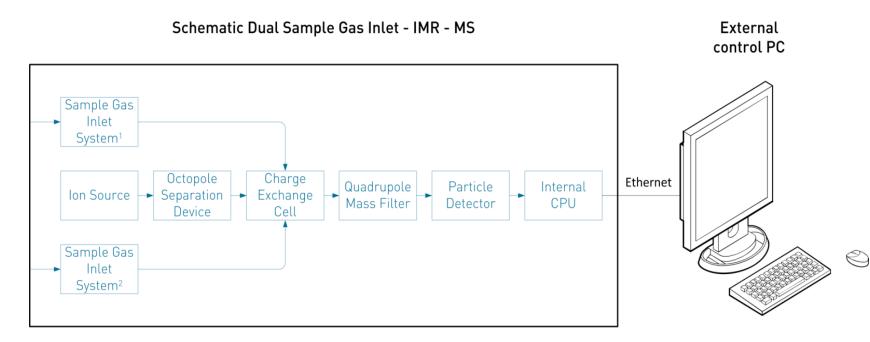
- LE: 10.44 eV
- ME: 12.13 eV
- HE: 13.99 eV

followed by

Primary Ion Source
 Octopole Seperation Device

Charge Exchange Cell
 Quadrupole - Mass Filter
 Particle Detector

6. Vacuum System
 7. Gas Inlet System


Ion Molecule Reaction with sample gas

molecules & <u>Mass Spectrometry = IMR - MS</u>

IMR-MS Technology – Dual Capillary Inlet

¹ Sample gas inlet for final CO₂ product quality

² Optional sample gas inlet for CO₂ feed- and process gas analysis

IMR-MS Technology

- Single two-body reactive collision conditions in charge exchange chamber
 - \circ Neutral, purely kinetic collisions \rightarrow no change of ion mass number
 - \circ Very low operating pressure → long mean free path between particles → Avoidance of bulk gas ionization
- Simultaneous detection of organic and inorganic compounds resp. compound classes (online or offline)
- Concentrations: ppt ppb ppm Vol%
- Time of analysis: > 1 msec per compound

IMR-MS Technology - CO₂ Applications

Feed Gas

- Sources: combustion, natural wells, fermentation, geothermal emission, ammonia, coal gasification, ethylene oxide, phosphate rocks, etc.
- \circ CO₂ Impurities: ppb Vol %
- Online monitoring of impurity profiles
 & time variations

In-Process

 \circ Online monitoring of CO₂ purification steps of catox, hydrocat, hydrolyzer, carbon beds, scrubbers, filters, etc.

Final Product Quality Control

Product to Storage, Storage Tanks, Truck filling stations

IMR-MS Technology – Catox Monitoring Applications

• CO₂ Feed Gas - Petrochemical Plant – Background:

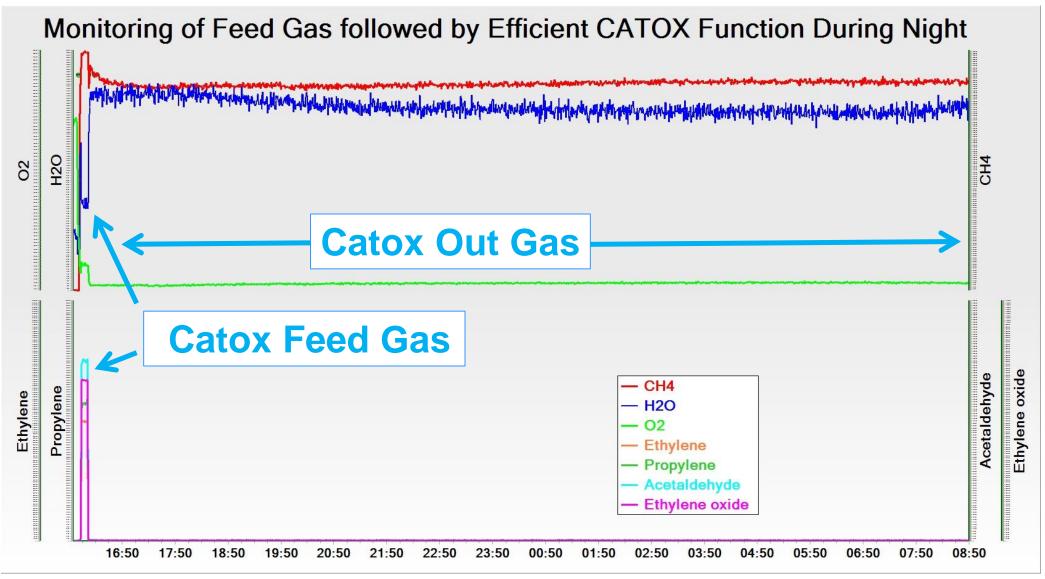
- $\,\circ\,$ Catox malfunction in contrast to its design specs
- $_{\odot}$ Time-Related decrease in Catox conversion rate
- Regeneration of Catox activity at lower temperatures
- \circ Breakthrough of small organics in the CO₂ feed gas
- \circ IMR-MS Monitoring of major impurities: O₂, H₂O, methane, ethylene, propylene, acetaldehyde, ethylene oxide, etc.

A. Original CATOX: 0.3% Pt on AI_2O_3

- T-in Catox from 390 360 C: 1.5 7.5 ppm ethylene (maximum desired value: 1 ppm)
- \circ Addition of adsorbent \rightarrow no better performance
- Possible solution: higher operating Catox temperature
- \circ Catalytic oxidation: exothermal \rightarrow too high temperature \rightarrow high risk for damage of Catox

B. New Catox: 0.15% Pt + 0.15% Pd on Al2O3

• At T-in 360 – 380 C: worse performance than original Catox

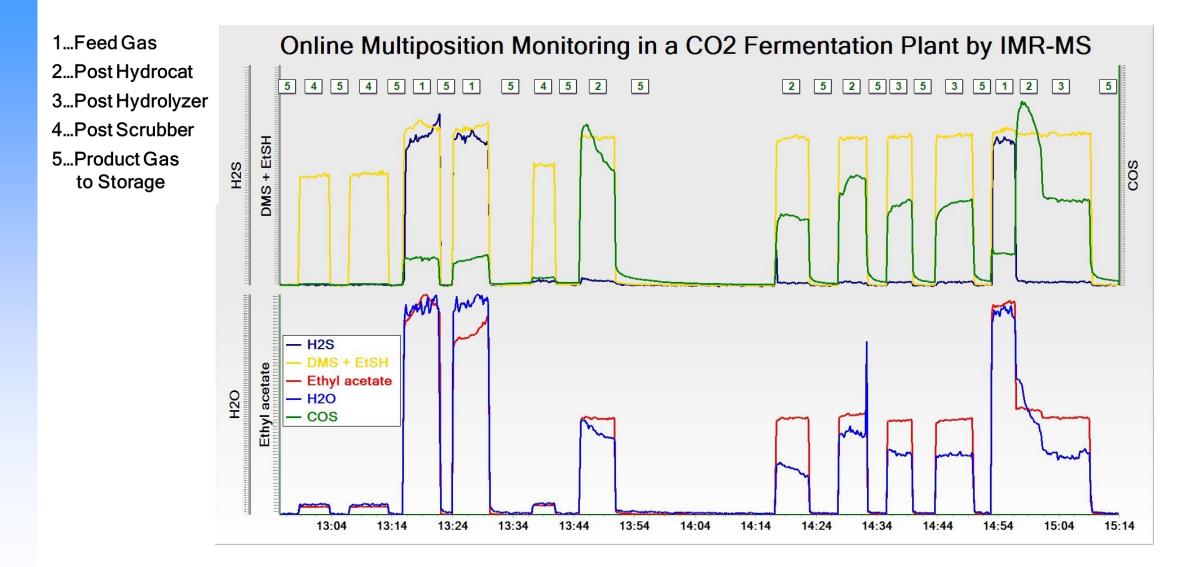

 \circ At T-in > 430 C: better performance than original Catox

Solution:

Installation of *1st layer* of original Pt catalyst + *2nd layer* of Pt + Pd catalyst with appropriate gas hourly space velocity

IMR-MS Technology – Catox Monitoring Applications

IMR-MS Technology – Fermentation Plant In-Process Monitoring


- In-Process Monitoring @ Key locations
 <u>Requirements</u>
 - Fast respond to process & concentration
 changes from Feed Gas In-Process Final Product
 - Rapid Sample location switching.

- Adequate temperatures of wet gas streams
- $\,\circ\,$ Regulated / equal pressures & flow rate for each sample location

IMR-MS Technology – Fermentation Plant In-Process Monitoring

IMR-MS Technology – Natural Well Monitoring vs GC Data

Compounds	GC Result	IMR-MS Result	Difference GC vs. IMR-MS [%]
Methane [ppm]	3,100	3,140	1.3
Ethane [ppm]	1,200	1,300	8.3
Propylene [ppm]	0.20	0.23	15.0
Benzene [ppb]	18	15	-16.7
Toluene [ppb]	4,310	4,310	0.0
Hydrogen Sulfide [ppm]	0.54	0.54	0.0
Carbonyl Sulfide [ppm]	1.7	1.4	-17.6

Background & Definitions

Total Sulfur Converter

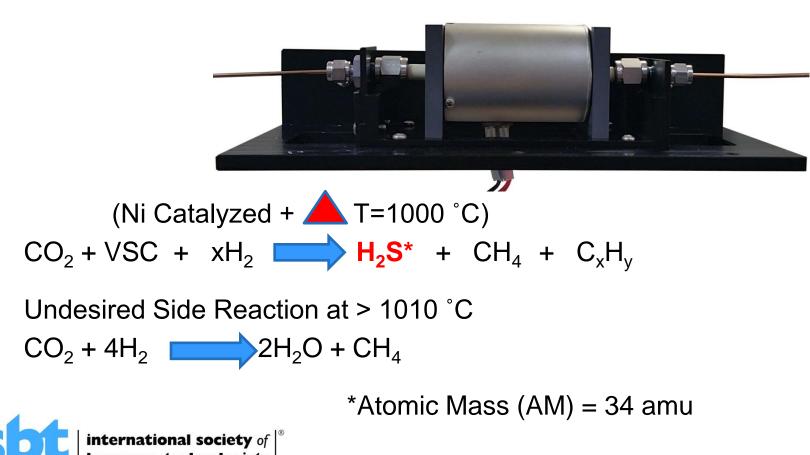
- It is important to monitor Total Sulfur Content (TSC) in both feed and final product CO_2 .
- \circ TSC is present in most CO₂ feed gas sources.
- High TSC has caused many beverage recalls.
- Unexpected increases of TSC in feed gas can cause liquid CO_2 quality upsets.
- Most on-line analyzers do not have the wide measurement range and H₂O tolerance for single instrument TSC analysis for both feed gas and final product.

ISBT Bulk Carbon Dioxide Quality Guidelines and Analytical Methods Reference 2010 (Method 13.0, recommends a TSC Limit = 0.1 ppm v/v (IMR-MS [SIS] is an acceptable method for this application)

Background & Definitions

Carbonyl Sulfide (COS) is the most important Volatile Sulfur Compound to monitor.

- COS is odorless.
- COS can be created during the CO₂ manufacturing process and is very common in feed gas sources.
- COS slowly hydrolyses into highly odiferous H₂S (rotten eggs smell) in acidic conditions such as carbonated beverages.
- High COS is historically responsible for most sulfur related odor complaints and packaged beverage recalls.

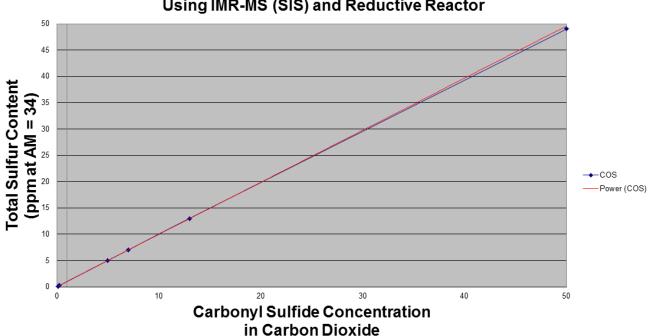



Background & Definitions

TSC Objective: ISBT Method 13.0 – Convert all forms of Volatile Sulfur Compounds (VSC) in CO_2 , into a single form for measurement as Total Sulfur Content. This can be achieved by either a reductive or oxidative conversion.

Reductive TSC Reactor

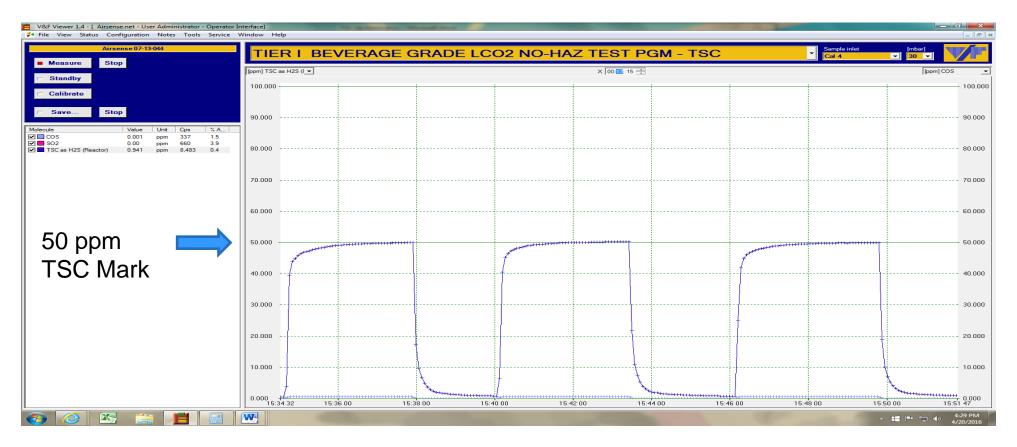
TSC-SIS Hardware / Plumbing


- Sample
- Hydrogen
- Total Sulfur

TSC Performance Data

TSC Measurement Range

- ISBT Method 13.0 recommended working range: 0.00 – 1 ppm v/v
 Limits: 0.1 ppm v/v TSC and 1.0 ppm v/v SO₂.
- Current range is 0.00 ppm v/v to ≈50 ppm v/v*.
- Most commercial feed gas sources have TSC < 50 ppm.


Conversion of COS to TSC Using IMR-MS (SIS) and Reductive Reactor

* Higher ranges not studied to date.

TSC Performance Data

TSC Measurement @ 50 ppm Level

Alternating analysis from 50 ppm COS to Zero CO₂

% COS conversion to TSC \approx 98+%

Key Sulfur Species currently being Studied at Feed Gas Impurity Levels

- Carbonyl Sulfide (COS)
- Hydrogen Sulfide (H₂S)
- Dimethyl Sulfide (DMS)
- Ethyl Mercaptan (EtSH)
- Carbon Disulfide (CS_2)
- Sulfur Dioxide (SO₂)

Advantage:

 Both TSC & speciated VSC are *simultaneously* monitored by the IMR-MS (SIS) with TSC reactor outlet.

Summary

IMR-MS (SIS) analyzers equipped with dual capillary inlets and reductive TSC converters exhibit a wide measurement range which is required for:

- Continuous CO₂ feed gas monitoring.
- Continuous in-process CO₂ composition.
- Continuous monitoring of beverage grade CO₂ for TSC and other key parameters.

Questions?

Thank you for your Interest!

