E-mail: Sales@airbornelabs.com

08873 T: 732-30

F: 732-302-303

Website: www.airbornelabs.com

H₂ Fuel Type I Grade D* Sampling & Analysis ISO-14687:2019 (E) Product Specs

Presented at the International Technical Cleanliness Forum & EXPO "Parts4Assembly"

May 2023

* Gaseous H₂: FCEV Fuel Cells for road vehicles

Why Test H₂ Fuel?

- Impurities in H₂ Fuel can reduce vehicle efficiency and potentially cause permanent, expensive fuel cell damage
- It is the responsibility of the H₂ Fuel supplier to identify, measure, and control the levels of impurities listed in the ISO/SAE guidelines to deliver an appropriate ISO/SAE H₂ fuel Grade Product for customer end use
- TRUST BUT VERIFY. It is also a responsibility of the Fuel Station owner and Government to ensure that the H₂ fuel stored and delivered to customers meets ISO/SAE Purity standards for the intended transport vehicle application.

The Critical Step in <u>ALL</u> H_2 Purity Test Programs is to ensure that a representative H_2 Fuel sample is taken and preserved until analyzed.

3 Key Aspects of an ISO/SAE H₂ Fuel Quality Program

- Representative Sampling
- Safe & Proper Hazmat Shipping
- Proper ISO-17025 Laboratory Analysis for Critical Impurities

Future Goal = Rapid, <u>On-Site</u> Analysis at H₂ Fuel Manufacturers and Fueling Facilities

ISO / SAE Type I, Grade D Purity Specifications & Analytical Methods

Parameter	Guideline Limit	Method
Hydrogen Fuel Index (H₂ Purity):	99.97 % v/v min.	
Total Non-Hydrogen Gases:	300 ppm v/v max.	
Maximum Concentration of Individual Contaminants		
Water (H₂O):	5 ppm v/v max.	ASTM D7653, D7649, D7941, D7941M
Total Non-Methane Hydrocarbons (TNMHC; C_1 Equivalent):	2 ppm v/v max.	ASTM D7675, D7833
Oxygen (O ₂):	5 ppm v/v max.	ASTM D7649, D7607
Methane (CH ₄):	100 ppm v/v max.	ASTM D7653, D7675, D7833, D5466
Helium (He):	300 ppm v/v max.	ASTM D7833
Nitrogen (N ₂):	300 ppm v/v max.	ASTM D7649, D7833
Argon (Ar):	300 ppm v/v max.	ASTM D7833
Carbon Dioxide (CO ₂):	2 ppm v/v max.	ASTM D7649, D7653, D7833
Carbon Monoxide ^b (CO):	0.2 ppm v/v max.	ASTM D7653
Total Sulfur Compounds ^c (TSC):	0.004 ppm v/v max.	ASTM D7652, D6228
Formaldehyde (HCHO):	0.2 ppm v/v max.	ASTM D7653, D7941, D7892
Formic Acid (HCOOH):	0.2 ppm v/v max.	ASTM D7653
Ammonia (NH3):	0.1 ppm v/v max.	ASTM D7653, D9741/D7941M
Halogenated Compounds (Halogen Ion Equivalent) ^d :	0.05 ppm v/v max.	ASTM D7892, D7676, D5466
Particulate Concentration	1 mg/kg	ASTM D7650, D7651

H₂ Fuel Impurity Profiles are **highly Feed Source Dependent**

Some impurities are introduced via transport / storage and dispensing (contaminants)

Some impurities cause *temporary* damage to a FCEV Cell

Some Impurities cause *permanent* damage to a FCEV Cell

Gaseous Impurities – Sampling Protocols

- A) "Gas Serial" type methods (Sample H35/70 Pumps). Some types <u>Do not</u> require a ½ filled FCEV Vehicle for sampling OR a large truck mounted >55L tank). Some models just require the <u>Manual Pump</u> Mode @ fixed Pressure with station venting to Atm.
- Method 1: ASTM D7606-17: (ex. NSP-7606 / JSM-7606. Passivated hardware, 1L x 2-valve passivated ss cylinder purge / fill. Manual pump mode Only. Accessories for on-site Detector Tube tests / H₂O / O₂ analyzers + other analytical sensors, JSM-7606 model for sampling of H35/H70 stations

OR

FCEV vehicle tanks, storage tanks, transfer lines, tube trailer applications. Minimal cylinder treatment needed with lab-based prep/testing. All units stored in a *portable case* for easy field transport & shipping.

Gaseous Impurities – "Gas Serial" Sampling Protocols (Cont'd)

- Method 2 (Table mounted, non-passivated hardware, 5L x 2-valve Al cylinder). Accessories for On-Site H₂O / O₂ analyzer testing). Manual pump mode Only.
- Method 3: ISO19880-1 Annex K. Employs EITHER a ½ filled FCEV vehicle (& Auto-mode)
 or No FCEV vehicle/Tank & Manual mode apps. Uses 1-Valved, large 46.7L Polished, 1-Valved
 Manganese Steel Cylinder (initially evacuated then filled-flushed-filled several times).
- Method 4: Pumps can EITHER be in <u>Auto Mode</u> with a 55L cylinder to simulate a FCEV vehicle or Manual Mode. Accessories can allow connected H₂O/O₂ etc. on-site analyzers.

Vehicle manufacturers have recently stated FCEV use during Auto-Mode H₂ sampling is not acceptable - as filling an FCEV with potentially contaminated H₂ may cause permanent cell damage.

Therefore, use of the pump's Auto-Mode for H₂ sampling will mandate use of a large Ballast tank to simulate the FCEV filling process.

Gaseous Impurities – Sampling Protocols (Cont'd)

- B. "Gas Parallel" type methods (Requires either a ½ filled FCEV Vehicle or a large ballast tank ex. 55+L for sampling). H35/70 Pumps can be in Auto Mode or Manual Mode. Sample cylinder in parallel line to Vehicle via T-fitting.
- Method 5: ISO19880-1 (10L x 1-Valve AL cylinder. Extensive cylinder preparation / multiple purging protocols). Requires a ½ filled FCEV vehicle or large ballast tank & Auto-Mode.
- Method 6: ISO19880-1 + SAE J2601. Can be used with / without ½ filled FCEV Vehicle or large buffer tank. Auto or Manual Sample Pump mode. 3 modules. 10L 1-valve Al cylinders or up to 3 x 2.5 10L x 2-valved cylinders. Extensive cylinder preparation and protocol.

Vehicle manufacturers have recently stated FCEV use during Auto-Mode H₂ sampling is not acceptable - as filling an FCEV with potentially contaminated H₂ may cause permanent cell damage.

ALI H₂ Fuel Sampling / Shipping Kit (used with NSP/JSM-7606 + MSM-7650) Samplers)

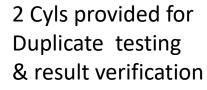
• 2 x 1L Silconert[™] Passivated Cylinders

2 x VHP Particulate SS 47 mm Filter Assemblies*

*(45 mm PTFE x 0.2 um PTFE/PE Filter Patches + Frit Backing)

End-capped & ID Tag Labeled Filter Assy in Anti-static bag

H₂ Fuel Sampling - 1L Cylinder


• All gas wetted parts are Silconert[™] passivated to prevent trace impurity wall absorption by active analytes (ex. TSC) + longer life in H₂ service.

Quick Connect Fitting

> Quick Connect Fitting

1900 psig (129 bar)
Pressure Relief

- Passivated high quality needle valves with wide seat base.
- Lanyard End-Capped, Quick Connect inlet / Outlet valves for NSP / JSM – 7606 Sampler coupling
- 1900 psig (129 bar) Pressure Relief Combination Valve.
- DOT or Pi marked Cylinder bodies.
- Small US Football size for easy transport & air shipping
- Sample Filled to 1,000 psig (68 bar). Many replicate analyses can be performed with this sample size.
- Simple, rapid cylinder prep & on-site purging protocol

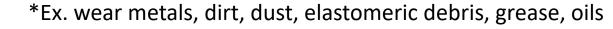
H₂ Sampling Kit Particulate (NVR) VHP SS Filter Housing

(Easily field exchangeable for Multiple Fuel Station Sampling)

Pre-Weighed, 47mm Filter PTFE x 0.2 um Filter Patches + backing Installed as per ASTM D7650 Method

Particulate Impurities; (ex. Non-Volatile Residues (NVR))* by ASTM D7650-21

A) Weighed 0.2 um x 47mm PTFE Filter patch + sampled H₂ wt <u>calculated</u> from pressure / temp measurement from a v. large (55+L) truck-mounted ballast tank.


 B) Weighed Filter patch plus total sampled H₂ kg wt needed for mg/kg H₂ wt measurement is precisely determined with by a Coriolis <u>Mass Flow Meter (MFM)</u> in Totalizer Mode (ex. MRM-7650).

Flow rate typically 10 – 20 g/sec.

Typical FCEV Fuel Tank

H₂ Sampling Platforms NSP 7606, JSM-7606* & MRM 7650

MRM-7650 + MFM Totalizer Module for Particulates (NVR)

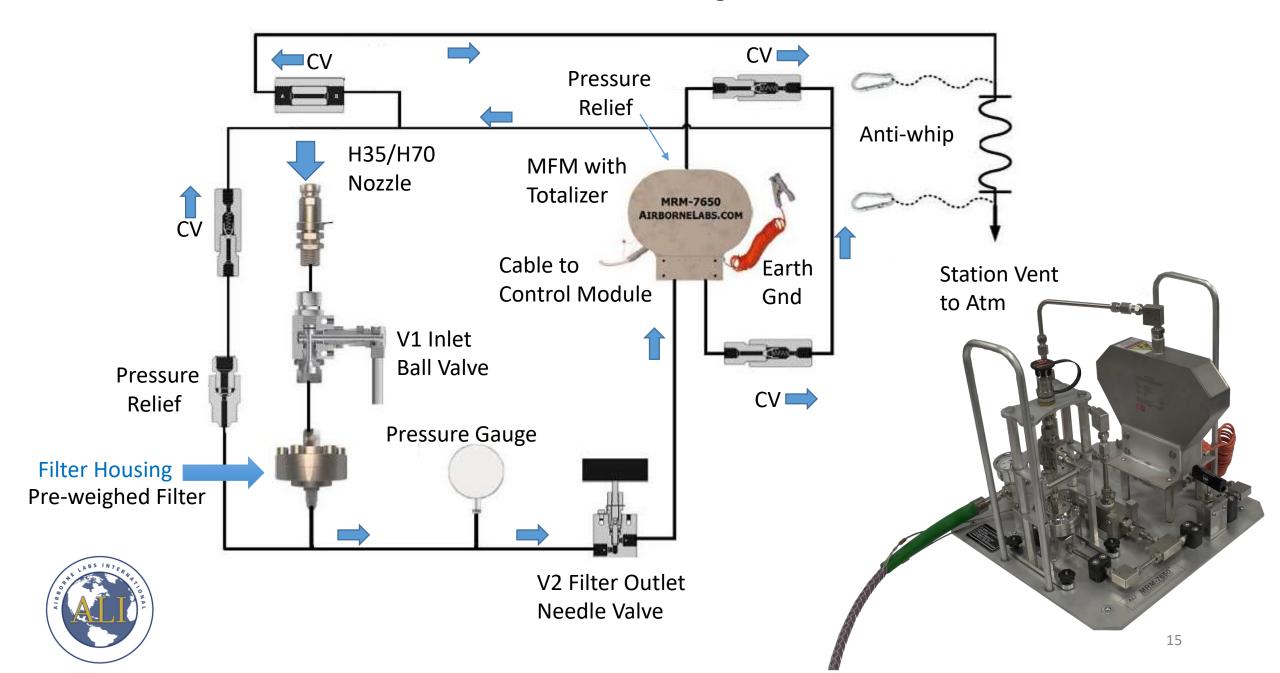
*Model **JSM-7606** similar to NSP model but designed for sampling **either** H₂ Fuel Stations or H₂ Storage Tanks **or** Sample Lines / Tube Trailers

Proper H35/H70 H₂ Sampling Protocol

Whenever BOTH Gaseous impurities AND Particulates (NVR) must be sampled:

- ALWAYS perform Particulate sampling 1st followed by Gaseous Impurities sampling 2nd
 WHY?
 - NVR is typically <u>NOT</u> distributed homogeneously throughout the H₂ gas phase as volatile gaseous impurities & contaminants will be.
 - Typically NVR materials are heterogeneously* surface located (mainly on the interior surface walls) throughout the pump's hardware during a static H₂ gas phase period.
 - * Because of this physical factor the **reproducibility** of replicate NVR samples should **not** be expected.

In theory then the 1st NVR sample taken will *most likely be* much **higher** than subsequent replicate NVR samples.


H₂ Fuel Sampling for NVR by MRM-7650

- Designed to sample for NVR directly from H35/H70 dispenser nozzles
- Uses a rugged Mass Flow Meter (MFM) with a Totalizer for precise and accurate measurement of total H₂ mass & volume sampled.
- Ideal for rapid (<10 min) station sampling
- Fully meets ASTM D-7650-21 requirements for H35/H70 particulate (NVR) sampling.
- Max MFM Flow ≈ 120 g/sec
- Typical Sampling Flow 10 20 g/sec

MRM-7650 Gas Flow Diagram - Overview

MRM-7650 H₂ Fuel NVR Sampling

BASIC SAMPLING STEPS – Overview

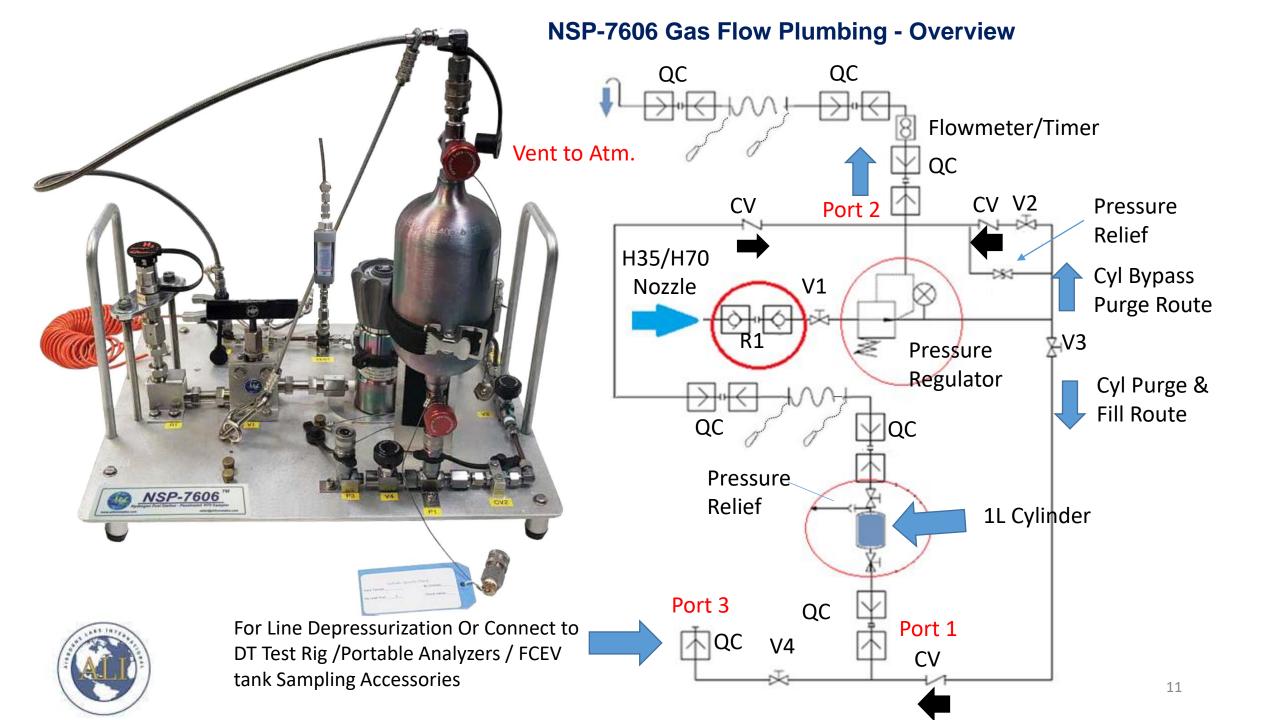
- 1) Place Station Dispenser in **Manual** Mode
- 2) Connect the MRM Ground Wire, MRM Vent line, Pump Nozzle & connect MRM Control Module
- 3) Pressurize to ≈2,500 psig (170 bar) & Slowly Open V1 plus leak check from Nozzle to closed V2. (note: If a leak is found the system must be shut down / depressurized & a new Filter Assy installed).
- 4) Close V1 Step Pressure up to ≈5,000 psig (340 bar) then *Slowly* Open V1 and leak check **again** (note: If a leak is found the system must be shut down / depressurized & a new Filter Assy installed).
- 5) Crack Open V2 slightly to allow H₂ to enter MFC then quickly Close V2
- 6) Turn on / Zero the Control Module kg Totalizer with CV crack pressure 10 psig (0.7 bar) residual H₂.
- 7) Start MCM / Slowly Open V2 until ≈ **15 g/sec** flow is reached –then monitor the kg of H₂ being sampled.
- 8) When 2+ kg H₂ minimum is sampled close V1 (the MRM will depressurize to minimum CV crack pressure).
- 9) **Depressurize** the Nozzle Source & Close V2.
- 10) Remove / Cap the Filter Assy + add kg H₂ Sampled* To its ID label.

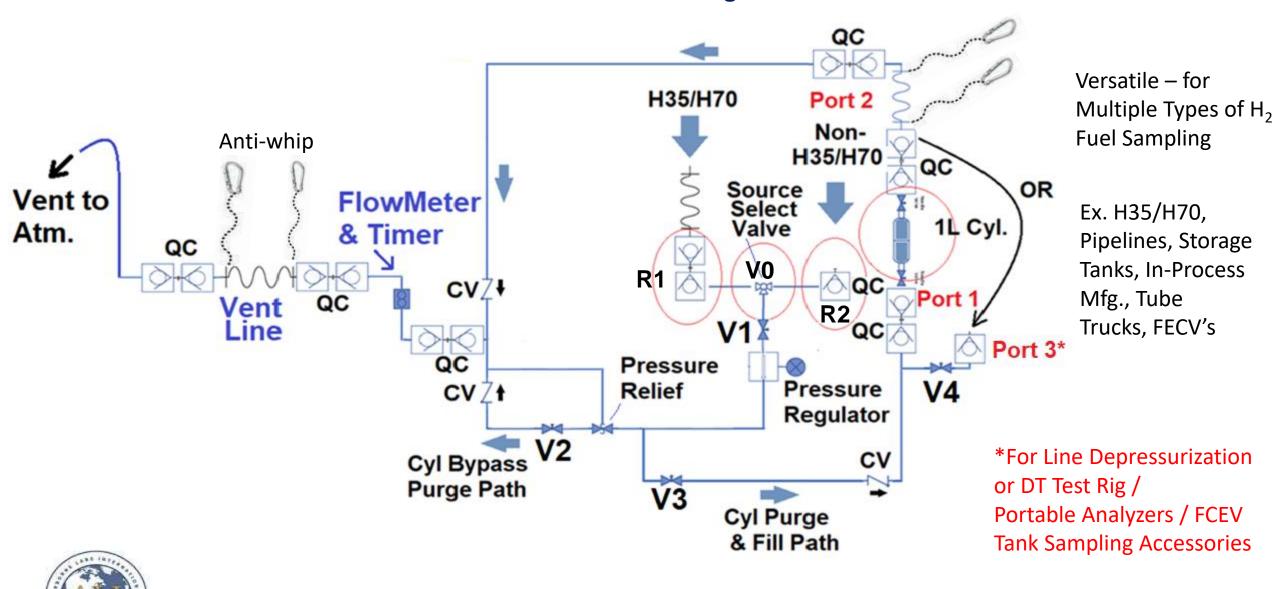
Vent Line

V1

Inlet

*Note MFM Totalizer data should be compared to Station Dispenser's "kg Delivered" Value they should closely match.

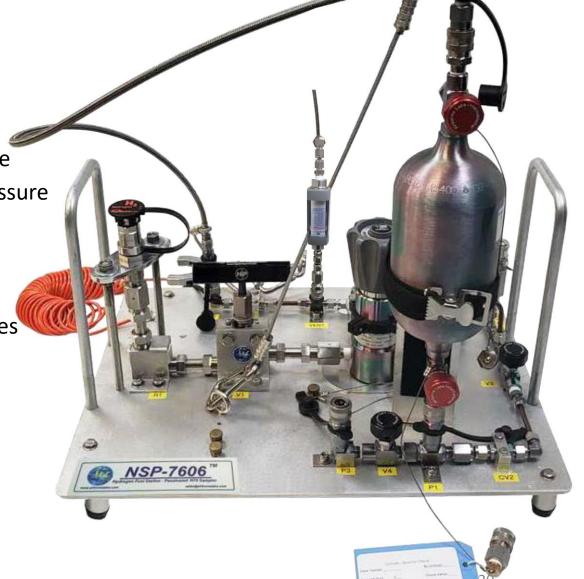

V2


Gaseous Impurity Sampling

- Gaseous impurities / contaminants should be **homogeneously distributed** in the H₂ Fuel
- Sampling for <u>Only</u> Gaseous impurities is <u>most common</u> in H35/H70 applications
- Described are 2 Sampler Models: NSP-7606 and JSM-7606 for H35/H70 and many other Sampling applications

JSM-7606 Gas Flow Plumbing - Overview

H₂ Fuel Sampling by NSP-7606 System


BASIC SAMPLING STEPS – Overview

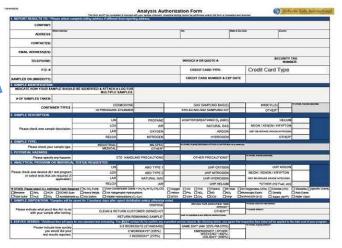
1) Place Station Dispenser in Manual Mode

2) Connect the NSP Ground Wire, NSP Vent line & Pump Nozzle

3) **Pressurize** Pump to \approx 2,500 psig (170 bar) & Set the NSP Pressure Regulator to 1,000 psig (68 bar) & H₂ Leak Test.

- 4) Purge Both Entire Platform Paths
- 5) **Purge** The 1L Cylinder
- 6) Fill the Cylinder to 1,000 psig (68 Bar) & Close Both Cyl Valves
- 7) **Depressurize** the pump Nozzle & NSP Platform
- 8) **Disconnect** / Label / Store the 1st 1L Cylinder
- 9) **Repeat** Process with the 2nd replicate cylinder

Proper Return of H₂ Fuel Samples (Hazmat Shipment) to ISO-17025 Analytical Lab


Overpack Ship Case

End-capped/ID Tagged Sample Filter Assembly in Anti-static Shipping Bag

Security Tags

Analysis Request
Authorization Form

NSP / JSM-7606 + MRM-7650 **Portability / Shipping Packages**

Easily Portable NSP or JSM or MRM Samplers in their Own Rugged **Transport Case**

ISO 14687:2019 **SAE J2719 COA** Report

Reports are Locked and Sealed to prevent potential data tampering

Customer

Hydrogen (H₂) ISO 14687:2019 Fuel Analysis Report

Date Samp Result	Spec 99.97 min 300 max
Result	99.97 min
	300 may
	500 max
	5 max
	2 max 5 max
	100 max
	300 max
	300 max
	300 max
	2 max
	0.2 max
	4 max
	0.2 max
	0.2 max
	0.1 max
	0.05 max
	1
	~ vot. analyte\vot. samponated (organic) compoun

Report Summary: For the tests performed, this H2 fuel sample meets all ISO 14687:2019 purity requirements.

Reviewed by / Date:

Laboratory Manager

COA Reports Can be Released

- Same Day as Received
- 1 Day / 2 Day / 3 Day
- Weekend/Holiday Service
- Std = 5 Working Days

23 F-21.68v1 (05/22) Page 1 of 1

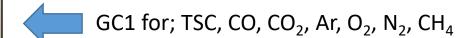
Al I Track No.

On-Line H₂ Analytical System (HyEx-2719)

(Designed for H₂ Fuel Producers + ISO-17025 accredited H₂ Analytical Laboratory Testing Operations)

- Employs ISO-14687:2019 / SAE-J2719 Recommended Methods and ISO-21087:2019(E)
 Validated Equivalent Analytical Methods (Validation Reports provided with this system)
- Highly automated & Rapid Analysis/Test Results With Quality Excursion Alarms
- Customizable for Specific H₂ Feed Gas Sources
- Can be used with 1L Cylinder or Transfer Line samples (ex. In-Process or Storage Tanks or Tube Trailers)

H₂ Fuel On-Line Analytical System (HyEx-2719)


Customizable Configuration based on H₂ Feed source



GC2 for; He, H₂O, THC & others

GAS-2XLH = 2 Ch DT Analyzer: NH₃, Halogens, Aldehydes, Organo / Halo-Acids etc.

AccuCal = Precision Dilution of Stock Stds to Working Cal Stds ASCM-5H Gas Controller: Sample Ch or Gas Std Selection

H₂ Carrier Gas & Zero Air Generator

Power Conditioner / UPS

Summary

- Proper H₂ Fuel Sampling is a critical 1st step in H₂ Purity Testing for proper Vehicle use.
- In all applications, a **Representative Sample** of the H₂ Fuel Must be taken. This is challenging for H₂ Fuel.
- The Integrity of the sample needs to be <u>preserved</u> from Time of Sampling to Final Analysis. <u>Short</u> time periods desired.
- Several types of Sampling Systems are available (ex. Gas Serial & Parallel) Each with advantages / disadvantages
- Sampling Applications: H35/H70 Refueling Stations, Vehicle Tanks, Bulk Storage Tanks, Pipelines, Plant Transfer Lines, In-Process Plant points, Tube Truck Loads.
- Proper Hazmat Sample shipping (when needed) is required.
- Analysis by an ISO accredited Lab using validated methods and fast result turn-around is required
- ALI PARA

Development of Economical, Effective, On-Site H₂ Fuel
 Analyzers for use at H₂ Fuel Manufacturers and point-of-use refueling sites is the next step in assuring Spec. Grade H₂ Fuel.

Thank You - Questions?

Authors

- Mark R. Taylor, President
 - Mark.Taylor@airbornelabs.com

- Don Pachuta, Ph.D., CEO
 - Don.Pachuta@airbornelabs.com
- Chandler Stryker, Technical Sales
 - Chandler.Stryker@airbornelabs.com

www.Airbornelabs.com 1-732-302-1950

Airborne World-Wide Offices & Distributors

- Angola
- Philippines

Brazil

South Africa

• China

- Russia
- France
- Taiwan

India

Thailand

Israel

- United Arab Emirates
- Pakistan
- United States of America

Poland

A special thanks to Sarah Pascoal, ALI Sales & Marketing Agent for her contributions to this paper

Note: NSP-7606/JSM-7606/MRM-7650 are trademarks of ALI & SilcoNert is a trademark of SilcoTech, NA